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A covariant formulation is developed and used to derive cross sections for the 
analysis of experiments in which polarized electrons (muons) are scattered from 
spin-zero and from polarized spin-l/2 targets. The analysis is based upon the 
single virtual photon representation of the electromagnetic interaction, initially, 
neither high-energy nor low-energy approximations are made so that one may 
derive results in which the orientation of the polarization vectors of the interact- 
ing particles changes as a result of the scattering. The general formulation is valid 
for all polarization configurations for the electron and nucleon in deep inelastic 
scattering, and for all polarization configurations for the initial and final state 
particles in elastic scattering. From the general covariant results, specific cross 
sections are derived for deep inelastic scattering as well as elastic scattering of 
electrons on muons, nucleons, and spin zero targets. In the latter case, the actual 
polarization vector for the scattered electron is determined. In the other cases 
discussed, this vector may be obtained from the cross sections. In addition, a 
method is presented for defining covariant cross sections, and this method is 
used to obtain results in the center-of-mass system as well as the laboratory 
system. Furthermore, explicit cross sections for virtual photon absorption are 
derived. Finally, in the appendices, an alternative method for the evaluation of 
traces is given as well as a discussion of the relativistic limit. 

1. I N T R O D U C T I O N  

In  the  ear ly  p a r t  o f  the  c e n t u r y  R u t h e r f o r d  (1911) p r e s e n t e d  a theore t i -  

cal  p i c tu r e  o f  n a t u r e  tha t  s t ands  as o n e  o f  the  m a j o r  m i l e s t o n e s  in the  

e v o l u t i o n  o f  the  phys i ca l  d e s c r i p t i o n  o f  ma t t e r .  T h i s  ear ly  p i c tu r e  was  

c o n f i r m e d  by  e x p e r i m e n t s  in w h i c h  l o w - e n e r g y  a a n d  fl pa r t i c l e s  were  
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scattered from atoms to provide a startling description of their internal 
nuclear structure. Throughout subsequent years, these theoretical and ex- 
perimental ideas were developed so as to provide a clear understanding of 
the internal structure of the nucleus. Today high-energy electrons are hurled 
from giant machines like thunderbolts from Zeus to act as probes into the 
deep internal structure of the nucleons. 

At present, techniques have been developed to the point where polarized 
beams of the electrons can be used to bombard polarized targets (Alguard 
et al., 1976a, b). Experiments involving the collision of polarized particles 
are of current interest (Hand, 1977) because they provide valuable informa- 
tion about the structure functions which characterize the fundamental 
nature of the electromagnetic interaction. The basic interaction which 
unifies all of these processes over an exceedingly wide range of interaction 
energies is one mediated by a single spacelike virtual photon. It is my 
purpose in this paper to present a unified and covariant formulation to aid 
in the interpretation of experimental polarization phenomena which are 
associated with this basic interaction. This formulation is valid for all 
polarization configurations which can occur for the initial and final state 
particles in the elastic scattering of electrons from spin-zero and spin-l /2 
targets; furthermore, it applies as well to the case of deep inelastic scattering 
where the initial electron andnucleon have arbitrary polarization and where 
the polarization of the scattered electron is detected. Since the formulation 
is developed in a covariant manner, it can be used to illustrate the common 
features of polarization phenomena which occur as a result of the single 
virtual photon exchange and which are observed from nonrelativistic to 
ultrarelativistic energies. Of particular interest are those phenomena which 
are associated with a change in the orientation of the electron's polarization 
and, in the case of elastic scattering, the target's polarization. Since these 
effects decrease with increasing interaction energy, their detection at high 
energy represents a clear challenge to experimental technique and precision. 

I begin in Section 2 with a description of the kinematical variables and 
coordinate systems which are useful for the representation of polarization 
phenomena. Also in this section, I discuss how one defines various covariant 
cross sections which provide the direct connection between experimental 
information and theoretical formulation. Section 3 contains the results for 
the elastic scattering of a polarized electron from a spin-zero target. Both 
low- and high-energy limits are obtained and discussed in terms of the 
actual polarization of the scattered electron. The principal development in 
this paper is found in Section 4 where the polarization effects associated 
with deep inelastic electron-nucleon scattering are discussed. Also in this 
section, one finds an interpretation of this process in terms of the absorp- 
tion by the nucleon of a spacelike virtual photon. In Section 5 elastic 
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scattering of polarized electrons from polarized muons and from polarized 
nucleons is described as a special case of the previously developed inelastic 
process. The modifications required to provide a description of the polariza- 
tion effects associated with the scattered target are given also in this section. 
Although much of the tedious algebraic reduction, in particular, the evalua- 
tion of traces, has been done with the aid of electronic symbolic computa- 
tional methods (Hearn, 1973), alternative instructive methods for the 
evaluation of traces maybe found in Garavaglia (1975) as well as Appendix 
A. Also in Appendix A, some of the longer results occurring in elastic 
scattering are found. Finally, an alternative procedure to the one used in the 
main text for obtaining relativistic limits is described in Appendix B. 

Useful introductory discussions of polarization phenomena may be 
found in Beresteskii et al. (1971) and Schwinger (1970). More detailed 
information may be found in Dombey (1969), McMaster (1961), and 
Fradkin and Good (1961). Good insight into the processes involving un- 
polarized particles may be found in Drell and Walecka (1968). Throughout I 
have used natural units (h=c=me=l,  a-----e 2) and the four-vector, ~, 
matrix, and bispinor conventions of Beresteskii et al. (1971). 

2. KINEMATICS AND CROSS SECTIONS 

In this section, I describe the kinematical variables and their relation- 
ships which are used in the subsequent analysis. As well I outline the 
general method for defining the various cross sections which are used to 
characterize the scattering situations which are considered. I begin with a 
description of the scattering process represented in Figure 1. This process 
represents an interaction in which particles characterized by four-momenta 
a and b interact as the result of a single virtual photon exchange to yield a 
particle characterized by four-momentum c and a collection of N particles 
characterized by four-momentum D = EN=Lpi . For this process, energy- 
momentum conservation is represented as 

q+b=D, q = a - c  (1) 

Q ,  . .~,.. C 

b ~ 0 

Fig. 1. The single virtual photon exchange in electron-nucleon scattering. 
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where a typical four-vector  is represented as a = (a  ~ a) such that  a 2 = ( a ~  2 
- a - a = m ` ,  2. Elastic scat tering is represented by (1) and the condi t ion 
D = d. The  interact ion channels  are def ined according to the invar iant  
quanti t ies 

4s = ( a  + b)  2 

4t = ( a  - c) 2 

4u = ( a -  d )  2 (2) 

which satisfy the equat ion 

4(s  + t + u)  = s  2 + b 2 + c 2 + d 2 

The  f o u r - m o m e n t u m  of the virtual pho ton  is denoted by  q, which is def ined 
in (1). 

In the center -of -mass  system, one finds the invar iant  expressions for 
energy, m o m e n t u m ,  and scat tering angle 

d~ = do(s, a ,  b)  = (as  + a 2 - b 2 ) / a s  x/2 (3a) 

do b = do ( s , b , a ) , doc = do ( s , c , d ) , do a = do ( s , d , c ) 

lal = Ibl = [ f ( s ,  a ,  b)/16s] 1/z ( 3 b )  

lel = Idl = [ f (  s, c, d )/16s] 1/2 

cOS%c = (a t  - a 2 - c 2 + 2 G G ) / 2 1 a  I Icl (3c) 

with 

or  

I ( s , a , b )  = [ 4 s - ( m a  + m b ) 2 ] [ 4 s - - ( m . - - m h )  2] (3d) 

f ( s , a , b ) : 4 [ ( a . b ) 2 - a Z b  2] 

In the labora tory  system, the cor responding  relat ions are 

co a = , 0 ( s , a ,  b)  = ( 4 s -  a 2 -  b 2 ) / Z m h  

tOb = m b ,  tOc ---- - to( u ,  c,  b ),  wd = - oJ( t ,  d ,  b ) 

lal = f l /E(s,  a, b ) /2m b, Ihl = 0 

[ c l = f l / Z ( u , c , b ) / 2 m b ,  I d l = f l / z ( t , b , d ) / 2 m h  

(4a) 

(4b) 
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In this case, the scattering angle is denoted by 0,,~, and it is found from the 
expression 

cos0a~ = [ 2 b 2 ( 4 t -  a 2 -  c 2) 

- ( 4 s -  a 2 -  b 2 ) (4u-  b z -  c 2 ) ] / [ f ( s , a ,  b ) f (u ,c ,  b)]1/2 

The principal concern of this investigation is a description of the 
polarization properties associated with the scattering process depicted in 
Figure 1. These properties are described with the use of four-vectors which 
characterize the polarizations of the interacting particles. For a sp in- l /2  
particle characterized by four-momentum a, the polarization vector ~ is 
defined to be twice the mean value of the particle's spin vector in its rest 
frame, i.e., ~ = 2(S) .  The components of the vector ~a are defined in the 
rest frame of the particle relative to the unit vector % which is in 
the direction of the particle's momentum in the frame of observation. The 
component of ~ parallel to eo is denoted by h~, whereas the component 
perpendicular to eo is denoted by ~ • The polarization vector satisfies the 
condition ~2 < 1 where equality represents a state of pure polarization and 
where inequality represents a state of partial polarization. The polarization 
four-vector associated with/~,~ is a spacelike four-vector obtained from the 
three-vector as the result of a Lorentz transformation in the direction e,. 
This four-vector is represented by 

with 

s~= [(lal /m,,)  X~,sa] 

s~= (a~ + ~_L e~• 

(5) 

The polarization four-vectors for other sp in - l /2  particles are defined in a 
similar manner. 

For the scattering of an electron of unit mass in the initial state la, G )  
to the final state Ic, sc), the four-vectors G and sc are given in the 
center-of-mass (c.m.) system as 

sa = (lal,N~,%) 

s c = (lalX~,s,.) (6) 

with 



2 5 6  G a r a v a g l i a  

The unit vectors % ,e  o • and ec,e~• are defined relative to the coordina te  
systems S o and S o which are defined as follows: The system S o is a 
r ight-handed or thonormal  triad defined by the unit vectors 

%, e 2 = (% • e~)/sin~%c, and e~ = e 2 •  (7a) 

The  system S~ is defined similarly in terms of  the o r thonormal  triad 

ec, e2, and e v = e 2 x e~ (7b) 

Viewed in a direction antiparallel to the m o m e n t u m  a, the vector % • lies in 
the plane ( e i ,%)  and makes an angle a with the direction %. With a similar 
definit ion of  the angle/3 between e~ • and e v in the system So, one finds 

e~ = cos cpe o + sin q0e 1 

e t,  = - sin~0% + cos ~pe 1 

e a • = cos ae~ + s inae  2 

e c • = cos/8 cos q0e 1 + sin/3e 2 - cos/3 sin cp% (8) 

For  the elastic scattering in the c.m. system of  an electron and a 
s p i n - l / 2  particle of  mass m with the initial state Ib, Sb) and with the final 
state Id, sa),  the polarizat ion four-vectors s b and s a become 

Sb= [ ( l a l / m ) X b , s b ]  

s a =  [ ( l a V m ) X a , S a ]  (9) 

with 

s b = ($ 'b /m)~oe t ,  + ~bleb_L 

s a = ( g ' o / m ) X a e a  + ~ a i e a i  

The corresponding unit vectors are given by 

% = - % ,  e a = - e  c 

e b • = cos ye 1 + sin ye 2 

e a • = cos 8 cos ~e t  + sin 6% - cos 8 sin ~% (10) 

where y and 6 are the angles measured f rom e 1 and e r ,  respectively. 
The  conf ronta t ion  between theoretical analysis and experimental  phe- 

n o m e n a  is accomplished with the aid of  various differential cross sections 
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which may be found from a conventional definition (K~illen, 1964) of the 
invariant total cross section for the interaction of two particles in the states 
la, s~) and [b, Sb), respectively, and the subsequent production of an n-par- 
ticle final state where each particle is characterized by a momentum and 
polarization state [ pi, s~). 

This cross section is defined as 

o ( s , t , u ,  so,s ,s  . . . .  )= 1 

2fl/Z(s, a, b)(2~r) 3" - 4  

• fdp~dp2...dp, f l  8(pZ~-m~lO(p,) 
i=1 

X~ a + b -  Pi "g(s,t,u,s~,sb,s,. .... ) 
i 

(11) 

with 

O(p)=[(p%a)+l] /2 ,  oa = (IPl 2 + m 2 )  1/2, 

and . .g(s,t,u,s~,sb,s ..... )=l(flMla,s~,b, sh)l 2 (12) 

where (flMla, s,~, b, sb) is the transition amplitude from the initial to the 
final state. In the definition (11), one uses the invariant measure in momen- 
tum space, 

dp _ O ( p ) d p 6 ( p Z - m  2) 
(2rr)32oa (2rr) 3 

(13) 

One also uses an invariant definition of the flux which is represented as the 
magnitude of the relative velocity lv~ -%1 in the c.m. system. With the aid of 
(3), the flux becomes 

F = fx/Z(s, a, b)/2o~g'b (14) 

Particular differential cross sections may now be obtained from (11). Of 
special interest is the differential cross section defined formally as 

do (s~ sb,sc, sa)=4o(s,t,s., sb,sc, s a ) 8 [ 4 t - ( a - c )  2] (15) 
dt ' 
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For scattering into the solid angle d ~ c ,  one finds from (15) for elastic 
scattering in the c.m. system 

do (S a $b,SoSd)~_ - __[ I ] do. dt d~c m , ~ ~-~ }---~(s a so,sosa) (16a) �9 . ' dcos %c 

which with (3)becomes 

do (Sa,Sb,Sc, Sa)= 6~_~sfl/2(s,a,b)fl/2(S,c,d)~t (s~,sh,s~,sd) 
d~.m. 

(16b) 

The corresponding differential cross section in the laboratory system 
may be found from (4) and (11) in a similar manner, and it becomes 

do (S~,Sb,Sc, Sa)= - f l /2(s ,a ,b) f3 /2(u ,c ,b)  do 
df~ab 2~rg(s,t,a,b,c,d) --~ -(s~'sb's~'se) 

(17a) 

with 

g ( s ,  t, a ,  b,  c,  d ) =  4 { ( 4 u -  c 2 - 0 2 ) [ 2 b ~ ( n t -  a ~ - c~) 

- ( 4 u -  c 2 -  b 2 ) ( 4 s -  a 2 -  62)] 

+ ( 4 s -  a 2 + bZ)(4u--(rnb + rnc) 2) 

(4u -- (m b -- rnc)2)) (17b) 

For the elastic scattering of an electron of unit mass with a particle of mass 
m, one finds the useful expression 

g(s , t , l ,m, l ,m)=lZ8mZ[s 2 + s t - s ( m  2 +1)/2 

- t ( m  2 - 1 ) / 4 +  (m 2 -1)2/16]  (18) 

The integration indicated in (11) and (15) when there is a two-particle final 
state characterized by four-momenta c and d is performed in the c.m. system 
with the momentum space measure 

2 dr dd2 
dcdd = ]e I dlc[ef~-s (19a) 

2 c  ~ 
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and with the aid of the 6 functions 6(a+ b - c - d ) = 6 ( ( 4 s )  1 /2 -  c ~  
d~ After integration over d 2, c 2, and d, one then integrates over 
cos cp~ and finally over Icl with 

~cldlcl = c~176 ~ + d ~  ~ + d ~ ( 19b)  
to find 

da (so, sb s~, Sa) = 1 a, b) J d ( s '  ' 4cry(s, t, s o , s b , s~, sa) (20) 

For all of the cross sections so far defined, when s denotes the 
polarization four-vector for a sp in- l /2  particle, averaging over the spin 
directions in the initial state is accomplished with s = 0. For a sp in- l /2  
particle in the final state, the summation over the spin directions of this 
particle is accomplished with s = 0 and with the cross section multiplied 
by 2. 

3. ELASTIC ELECTRON SCATI'ERING ON A SPIN-ZERO 
TARGET 

In this Section, I describe the elastic scattering of an electron on a 
spin-zero target. This example is simpler than the others that are considered, 
and it is useful for pointing out the physical effects and the analytical 
techniques which are similar to those that occur in more complicated 
interactions. 

This analysis is based on the scattering diagram in Figure 1 where an 
electron initially in the state la, sa) interacts with a spin-zero target of 
four-momentum b and mass m. The scattered electron is represented by the 
state Ic, sc), and the final state of the target is represented by the four- 
momentum d. The polarization four-vector s c represents the polarization 
which is accepted by the detector. The polarization four-vectors sa and sc 
satisfy the conditions s a. a = s~. c = 0, and - so 2 ~< 1, - sc 2 ~< 1, where for the 
second pair equality represents a state of pure polarization. The transition 
amplitude for this process is represented in momentum space in terms of the 
electron current J(a,c)e,  the hadron current J ( b , d )  h, and the photon 
propagator D~(t )  as 

(c, dlMla, b) = aJ(a, c)e .D(a t ) . J (b ,  d)h (21) 
where 

J~(a,  C)e = ff(c) 'y~u(a) 

J " ( b , d ) h = F ( 4 t ) p ~ ;  

D~,~ (4t) = 7rg~/( t + ie) 

p = 2 b + q  

(22) 
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According to the definition (12), one finds 

~r [ a~rF(4t)t ] 2p'L(s~ , Sc). p (23) 

where the gauge-invariant lepton polarization tensor L""(s,, So) is 

L"~(s~, so) = Tr[ OcTopi3, ~ ] (24) 

In this definition, the polarization density matrix for an electron of four- 
momentum a is defined as 

(p . ) , j  = ui( a )# j (  a ) (25) 

such that Troa = 2. 
This matrix may be expressed in the covariant form (Michel and 

Wightman, 1955) 

Pa = Po,,( 1 + ~.75) (26a) 

with 

P0~ = (~ + 1 ) /2  (26b) 

After evaluating the trace in (23), one finds the invariant differential 
cross section from (20). It is now possible to write this cross section in a 
form which brings out the physical influence of the interaction on the 
scattered electron's polarization vector. This is accomplished if one writes 
(23) in terms of the actual polarization four-vector s J  of the scattered 
electron. The polarization density matrix OJ associated with the four-vector 
s J  may also be represented in the form (26). When O,. is similarly repre- 
sented, it characterizes the polarization accepted by the detector. Since the 
probability for detecting the polarization represented by s C is equal to 
Trio[pc], one can conclude from (24) that pc/is proportional to P0cPP~PP0c 
so that 0[(1 - r = (1 - r = 0. With both Pc and O[ represented as in (26) 
and with the condition p0c 2 = 00o it follows that 

2 
Tr[oJpc]=2(1-sJ.sc)=A(s,t)oTr[Pc[~O~l)] (27) 

Using the reduction of L""(s,, so) in terms of the gauge-invariant tensors 
given in (B4), one can show that 

p.L(s~, so). p = A(s, t )o+  p .LS(s,, so). p (28) 
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with 

A(s,t)o=p.L(O,O).p=8[(s-u)2+(m2-t)t] (29) 

The components of s / c a n  now be found as the coefficients of the compo- 
nents of sc in the expression 

s/.s~ = - p .LS(s~, sr t)o (30) 

Returning to (23), one finds that the invariant differential cross section may 
be written in the form 

do (so,sc)= [a~rF(4t ) ]2  A(S, t )  ~ ( l - s / G )  (31) 
dt t 47rf(s, 1, m) 

Upon evaluation of the trace in (30), one finds the invariant expression 

4 [(4S m 2 s/'sc=Sa'Sc A(s,t) ~ - -1)(a.scb.sa+b.ScC.Sa ) 

+4tb.s,(a.s~ + b.sc)-m2a.sr (32) 

One may now use (31) and (32) to obtain information about all 
polarization configurations which can occur for the initial and the scattered 
electron. If one notes that in the rest frame of the scattered electron 
s/. s C = - ~/.  ~c, then he may find the components of the vector ~ / a s  the 
coefficients of the components of/~r To find these components, one writes 
s o, and s c as in (6) and uses (32) to obtain 

16t(4s+m2 1)2]~ 
h / =  l + f ( s , l , m ) A ( s , t )  ~ 

+[(4s-rn2-a)(4s+m2-1) ] 
sl/2A ( s, t )o sin epa c cos ct~a _L 

,{r=(l+{l_[f(s, l ,rn)+16st](4s-1)) 32st ) 
2sA(s,t)o f(s,l ,m) c o s a G •  

- [  (4s- m2-a)(4s + m2-1)sinePac ]x t)o 

f{2 = sin af,, l 

(33) 
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with 

- f ( s ,  1, m )  sin20p~j2) (34) 
t 16s 

where the scattering angle is measured in the c.m. system. 
Although (31), (32), and (33) describe all polarization phenomena 

associated with this simple process, much physical insight may be gained if 
one considers various limiting results which can be obtained from these 
equations. Beginning with the relativistic limit in which one neglects the 
electron's mass relative to the quantity 4s, one finds from (33) 

~/=~,o 
G ,  = cos ,~G l 

~{2 = sin ~, j_ (35) 

This result tells one that in this limit the orientation of the electron's 
polarization vector relative to its momentum is unchanged as a result of the 
scattering process. 

Additional insight is gained into the effect of the interaction on the 
electron's polarization vector, if one considers the case when the target's 
mass is much larger than the electron's mass and energy. In this case the 
scattering angle epic in the c.m. system is the same as the scattering angle 0~c 
in the laboratory system. With the approximations 

4s = m ( m  +2c%) 

f ( s ,  1, m) = 4m2( ~%2 _ 1) (36) 

one observes that the components of the polarization vector in (33) become 

Xc/= fl  (c0o, O)~k a --I- f2 (w,,, 0)cos ~ , ,  • 

~{,, = fl(o~ a, 0)cos ct~a • - f2 (wo, 0)X,, 

with 

~{2 = s i n a ~  • (37) 

fl  ( c%, 0) = 1 - 2 / [1  + c%2cot2 ( 0/2)] 

f2 (t%, 0) = 2t%cot(0/2) / (1  + o~a2cot2 (0 /2 )  (38) 
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For this case, one finds in the relativistic limit ]'1(%, 0) = 1 and f2 (%,  0) = 0 
so that one again recovers (35). Further insight is obtained from this case if 
one now considers the low-energy limit in which the energy ~a = 1. In this 
limit 1"1 (1, 0) = cos 0 and I"2 (1, 0) = sin 0 so that (37) becomes 

~ / =  cos Oh~ + sin 0cos a ~  • 

~{1' = - sin 0h a + cos 0 cos a ~  • 

~{2 = sin as • (39) 

In this way, one recovers the well-known result that the quantization 
direction of the electron's spin does not change as a result of low-energy 
scattering. At this point it is interesting to note that the result for the special 
case given in (37) agrees with the result on p. 272 of Beresteskii et al. (1971), 
where 

~/= (A2 -IB[2)~a + 21BI2e2"/;~ + 2AIBIe2 • ~ (40) 

AZ + IBI z 

with 

A = o~a + 1 + (w~ - 1)cos 0 

B = - i(o~ - 1)sin 0 

Further understanding is achieved when one considers the specific 
differential cross sections which are related to the limiting results already 
discussed. In the laboratory system, the differential cross section of interest 
is found from (17) and (31) with rn a = m~ = 1, and rn b = m a = m. For this 
case the relativistic limit is found when one uses the approximations 

f ( s , l , m )  = ( 4 s -  m2) 2 

s - m 2 / 4  = (m/2)w~ 

u - m 2 / 4 =  - (m/2)60~ 

t = - ~ s i n  2 ( 0 / 2 )  

~c = ~,~/[1 + 2 ( o ~ / m ) s i n 2 ( O / 2 ) ]  (41) 

In this limit, the differential cross section in the laboratory system becomes 

do ( sa , sc )  = d~_~o (0 ,0 ) (1+ /~ / '~c )  (42) 
d~ac 
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with ~/given by (35). The cross section resulting from averaging on the spin 
directions of the initial electron and summing on the spin directions of the 
scattered electron is 

2d-~ (O,O)=[ctc~ (43) 
[ 2tOasin2(0/2) 

Returning to (31), one can consider the case also when the recoil of the 
target can be neglected. In this limit, one finds 

do (s~ s ~ ) = (  do ) F2(_lq12)( 1 + ~ / . ~ c ) / 2  (44) 
d~,~ ' d-~ac Mott 

with ~/given by (37) and with the Mott cross section given by 

Here v denotes the electron's velocity, and the Rutherford cross section is 

do " aw a )2 

Finally, in the nonrelativistic limit when ~% = 1, one finds 

dalab Ruth. 2 

with ~/given by (39). 
Of particular interest are those effects associated with a detection of a 

change in the direction of the polarization of the electron. Various ratios 
may be found from (31) which are independent of the form factor F(4t). 
For example, with reversal of the polarization vector associated with the 
detector one finds 

do(f,, - ~c)/dt 1 - ~/. ~c (48a) 
do(~,~)/dt I +  ~ / - ~  

For the case of helical electrons with ~ = I and ~ c -  + 1 or - I ,  one finds 

do( +, -) /dt  = - 16t(4s + m 2 - 1) 2 (48b) 

do(+,+)/dt 2f(s,l,m)A(s,t)o+16t(as+m2_l) 2 
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In the high-energy limit with s >> m, one finds that this effect decreases with 
energy as 

d o ( + ,  - ) / d t  = - t = sin2(0/2) (48c) 
do(+,  + )/dt 4s 2 mzo~o[l +(2to~/m)sin2(O/2)] 

In the case when one neglects effects due to the recoil of the target, the 
ratio (48) becomes 

do ( +, - ) /dt  _-. tan 2 (0 /2)  (49a) 
do( +, + )/dt  o~ 2 

Interesting phenomena are found also when the polarization vector of the 
electron is initially perpendicular to the beam direction. For example, if 
~ol =1 and Ac = +1 or - 1 ,  then 

do(~ l  =1,  Xc = - 1 ) / d t  
do (~ l  =1,  ~c =l ) /d t  

1 - o~acot(0/2 ) ]2 

= 1 +  ~ c o t ( 0 / 2 )  
(49b) 

In conclusion, one notes that the ratio in the case when ~1 = 1 and ~cl = + 1 
or - 1  is the same as (49a) and that the differential cross section vanishes 
when ~a2 = 1 and ~c2 = - 1. Numerical values for the ratio (48b) are given in 
Table I for the elastic scattering of helical electrons from helium in the 
laboratory system. 

4. DEEP INELASTIC SCATrERING AND VIRTUAL PHOTON 
CROSS SECTIONS 

The scattering of a high-energy electron in the state la, G> to the final 
state [c, so) from a nucleon in the state ]b, So) to produce a final state with N 
undetected hadrons characterized by total four-momentum D = a + b -  c, 
may be also analyzed with the invariant cross section (11). Before develop- 
ing various specific cross sections for the analysis of experimental situations 
involving all possible polarization configurations for the particles in the 
initial state and for the scattered electron, it is useful to describe the physics 
of this process in terms of the absorption by the target of a virtual photon of 
effective mass qZ= 4t. This absorption process may be analyzed as well 
with the invariant cross section (11) which can be used to define the cross 
sections for the absorption of a virtual photon of specific polarization. 
Specific cross sections of this type have proven useful to other researchers 
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TABLE 1. The Polarization Parameter P(s, t) = [do( + ,  - )/dt]/[de( +, + )/dt] 
Forms Eq. (48b) for Values of v o, where r = w *̀ - % = VOW,, for the Elastic Scattering 

of Helical Electrons from Helium. The Electron's Energy in Natural Units in the 
Laboratory System is to,,, and the Maximum Energy loss is Vm~ ~ = f (s ,  1, m)/8ms. 

P(s, t) P(s, t) P(s, t) P(s, t) 
to~ = 1.1 to,~ ~ 1.01 to,, = 1.001 to, = 1.0001 

voXlO -x  x = 5  x = 6  x = 7  x = 8  

0.5 0.087 0.099 0.100 0.100 
1,0 0.195 0.220 0.223 0.223 
1.5 0.332 0.372 0.376 0.377 
2.0 0.512 0.568 0.574 0.575 
2.5 0.756 0.830 0.838 0.839 
3.0 1.111 1.199 1.208 1.209 
3.5 1.671 1.756 1.766 1.767 
4.0 2.684 2.698 2.701 2.701 
4.5 5.084 4.626 4.592 4.589 
5.0 17.853 10.806 10.440 10.405 

P(s , t )XlO -2 P(s , t )•  -2 P(s , t )•  4 p ( s , t )X lO-6  
t% = 5 w,, = 10 to,, = 100 to. = 1000 

% X l 0 - "  x =  3 x =  3 x = 2 x =1 

0.2 0.718 0.080 0.081 0.104 
0.4 1.751 0.173 0.176 0.232 
0.6 3.362 0.285 0.290 0.392 
0.8 6.226 0.420 0.428 0.601 
1.0 12.741 0.586 0.600 0.881 
1.2 42.129 0.797 0.818 1.280 
1.4 1.072 1.104 1.891 
1.6 1.446 1.499 2.944 
1.8 1.986 2.075 5.198 
2.0 2.832 2.996 13.405 
2.2 4.345 4.704 
2.4 7.863 8.966 
2.6 24.462 38.402 

for the interpretation of experimental information regarding inelastic 
scattering (Gilman, 1972; Hand, 1963; Bjorken, 1970). 

The method which I describe here for defining the particular photon 
absorption cross sections is essentially a more conventional version of the 
method used by Schwinger (1975a, 1975b). To begin, one considers the 
interaction of an electron and the target to be mediated by a spacelike 
photon of momentum q = a - c which is associated with an electromagnetic 
field characterized in momentum space by the vector potential A"(q). This 
vector potential satisfies the Lorentz condition q.A(a)= 0 and takes the 
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f o r m  

At(q)  = - [ Ir/( t + ie)] g"~J~( c, a ) e (50a) 

It may also be written as 

3 
A~'(q) = -  (47r) 1/2 E e~'(X)A(X) (50b) 

h = l  

where e(h) denotes the polarization four-vector for a state of pure polariza- 
tion. One can choose three independent states of polarization which are 
compatible with the Lorentz condition such that q. e(X)= 0. Returning to 
(11) with the initial virtual photon and nucleon state represented by 
Iq, e(X), b, sh) and with the transition amplitude to the final state containing 
N hadrons represented by 

( f lMIq,  e(X),b, sb) = -a~/2A(q).(b,  sblJalU) (51) 

one finds 

o (e (h ) , sb )  = a8~re*(h)'ImH(q'b'sb) 'e(h) (52a) 
m(v 2 - 4 t )  1/2 

For this cross section, I have used (3d) in the form 

f ( s ,q ,  b) = 4mZ(v 2 - 4 / )  

and I have used the variable v = ( b . q ) / m  which corresponds to the 
electron's energy loss % - % in the rest frame of the target; furthermore I 
have introduced the definition 

ImH""(q,b, sb) = E ~, 1 
N spin 8 (27 r )  3N-4  fdpldpz...dPN 

N 

• I - I 6 ( p Z - m 2 ) O ( p , ) 6 ( q + b - D u )  
i=1  

x (b, sblJfflN)(NIJr, lb, sb) (52b) 

As can be seen from the unitarity condition for the case of the forward 
scattering of a virtual photon by a nucleon 

2Im(q,  blTIq, b) = ( 2 ~ r ) 4 ~ ( q  + b - DN)I( q, blZlN)l 2 (53) 
N 
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with 

( f l T l i )  = I-I ( 2 4 ) - ' / Z l - I  ( 2 g / ) - ~ / 2  ( f l M l i )  
i f 

The tensor H""(q ,  b, Sb) is proportional to the amplitude for the forward 
scattering of a virtual photon by the target. It follows from the gauge 
invariance of the scattering matrix that H""(q ,  b, Sb) may be expressed in 
terms of gauge-invariant tensors such that 

4 

H~"(q ,  b, sb) = E I m  H ( 4 t ,  ~,)iT, ~ (54a) 
i=1 

with 

T~ '~ = - m 24t ( g"" - q"q ~/4t ) (54b) 

T~ ~ = - 4t [ b ~' - ( m l , / 4 t  )q  ~] [ b ~ - ( m u / 4 t  )q  ~] 

-- (1 - ~,2/4t) T~ '~ (54c) 

T~"(sb)  = - 2 m 3 i E ( t L ,  u, q, Sb) (54d) 

Ta~(Sb) = -- m q ' S b i E ( # ,  P, q, b)  (54e) 

where one uses the notation 

E (  a, b, c, d )  = e~"X~ (55a) 

with the completely antisymmetrical pseudotensor defined according to 

ie ~€176 = (1 /4)Tr[  3,s~,~y ~,x3,~ ] (55b)  

The tensors (54) may be derived from either a gauge-invariant representa- 
tion of the forward photon scattering transition probability made up of 
scalars formed from the electromagnetic field F " "=  q~'A"(q) - q~A"(q)  and 
the four-vectors q, b, and s b as done in Schwinger (1975a, b) or by a direct 
reduction of the polarization tensor of the nucleon occurring in elastic 
scattering as described in Section 5. The tensors in (54) have the convenient 
properties 

q~T/~'~ = 0, i = 1, 2, 3, or 4 

= = 0 (56)  
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where T~ ~ and T2 ~" are symmetrical in / t  and I,, while T~'"(sh) and T~(sb)  
are antisymmetrical. 

With particular choices for the photon polarization four-vectors in 
(52a), one can construct as many virtual photon absorption cross sections as 
there are form factors Im H~(4t, ~), and these form factors may then be 
expressed in terms of the cross sections. The photon polarization four-vec- 
tors can be represented in a coordinate system formed from the right-handed 
orthonormal triad ep, %, and e r, where eq is in the direction of the virtual 
photon's momentum. This system is defined as follows: 

ep=e Xeq 

% = ( a - c ) / l a - c l  

er = e o • ec/sinO~c (57) 

A state of transverse polarization is represented by a unit vector e r in the 
plane (ep,er), and the associated polarization four-vector satisfies the condi- 
tions e * ( T ) . e ( T ) = - 1 ,  and q .e (T )=O.  For convenience, the spacelike 
four-vectors e(p), and e(r) are represented in terms of four-vectors for 
states of circular polarization such that 

r  = e( + )+ e ( -  ) 

i~/2e(p) = e ( - ) - e ( + )  (58) 

The cross-section for the absorption of a transverse virtual photon is found 
with the choice e(T) in (52) to be 

o r = Q o [ ( 1 - u 2 / 4 t ) I m H z ( 4 t ,  p ) - I m H l ( 4 t ,  u)] (59a) 

with 

Qo = - 321ramt / u  (1 - 4t / p  2)1/2 (59b) 

A state of longitudinal polarization is represented by the timelike unit 
four-vector 

e"( L ) = ( mpq ~' - 4 t b  ~ ) / m [  (4t)2-4t t ,2]  1/2 (60) 

When this four-vector is substituted into (52a), one finds the cross section 

o L = QoIm Hx(4t, u) (61) 
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At this point it is worthwhile to observe that the form factors 
Im Hl(4t, v), and Im H2(4t, p) are related to those used by other authors 
(Gilman, 1972, pp. 130-133) by the equations 

Im Hl(4t, v) = - ( ~ r / 8 m t ) [ -  Wl(4t, v)+ ( 1 -  v2/4t)  l, V2( 4t, u)] 

Im H2 ( 4t, p) = - ( ~r/8mt ) W2 ( 4t, p) (62) 

Furthermore, the cross sections (59), and (61) differ from those used by 
others in the definition of the flux where the replacement m e ( 1 -  4 t / v2)  ~/2 
---, mK is made with mK -- my + 2t. 

The remaining two form factors also may be related to cross sections 
for particular polarizations. One relation is obtained if the direction of the 
nucleon's spin vector is chosen in its rest system to be in the direction eq, the 
direction of the virtual photon's helicity. In this case the polarization 
four-vector for the nucleon may be written as 

s~ = [q~ - ( l , /m )b~] / ( v  2 - 4 t )  1/2 (63) 

With this choice, the tensors T~'~(sb) and T~(sb) are related according to 

(v 2 - 4 t  )T~(sb)  = 2urnTf'(sb) (64) 

Now if one uses e(+), and e ( -  ) in (52a), it is found that 

o ( )~ q ) = ar - ~ qQo [ ( 1 -  j,2/nt ) lm H4 ( 4t,1, ) - ( 2mJ,/ at )Im H3 ( at, p ) ] 

(65a) 

o ( r  $ ) + o ( r  4) = 2Or (65b) 

-16tram [2m~,imH3(4t,v ) 
a(~" J ' ) - a (~ ' ,~ )=  ( e 2 - 4 t )  z/2 

+(v~-4 t ) ImH4(4 t~ l , ) ]  (65c) 

In the above "f 1" denotes parallel alignment of the nucleon's spin direction 
and the photon's helicity and $ $ denotes antiparallel alignment. To com- 
plete the description, a final cross section may be found from the four-vec- 
tor e(L) and the space like unit four-vector 

e~(Tb) --- E(/z, q, b, s~)/Dt/2(q,  b, Sb) (66) 
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with 

D(q, b, Sb) = 

4t my q.s b 

mp m E 0 

q. s b 0 Sb 2 

It is convenient to choose s b so that in the rest frame of the nucleon it is 
equal to +eq_L SO that q.s b -- 0, and sb 2 = - 1 .  In this frame e(Tb) becomes 
(0, +eq • L ) and D(q, b, sb) = m2(p 2 - 4 t ) .  The desired cross section is 
found with the choice 

e( LT ) = ae( L ) -  ibe( Tb ) (67) 

where a and b are real constants and where e(LT) is normalized according 
tO 

e * ( L T ) . e ( L T ) = a 2 - b  2 

It now follows from (52a) that 

a(~b• = _+I)L r =  a2oL + bZor 

+ 4abQo [ m / (  -4t)1/2] Im H3 (4t, . )  (68) 

Before concluding this discussion, it is interesting to note the results for 
real photons which are found when 4t = 0. It can be seen from the ratio 
oL/ (o  L + or)  that e L vanishes and that a r becomes the total cross section 
for the absorption of photons by an unpolarized target 

ov = or(4t = 0) = 8,ramulm H2(0 , v) (69a) 

Also in this case one observes that (65c) becomes 

ov(T T ) -  ov(l' ~ ) =  -16~ram[2mlmHa(O,p)+ulmH4(O,p)] (69b) 

Returning to the principal task of deriving cross sections for the 
analysis of experimental situations with general polarization, one can use 
the transition amplitude 

( f lMla ,  sa,b, so>=a(NlJhlb, so) 'D(t) 'Je(a,c)  (70) 
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where the photon propagator is found in (22), along with (11) to write 

ol 2 

O(s't'u'sa'Sb'S~)= 27rf,/Z(s,l,m) 

- 1 ) L  (s~,s~)ImH~,(q,b, sb) x fdCO(c)8(c~ .~ 
t z + i e  

(71) 

Here L""(sa, s~) is given by (24), and Im H~(q, b, SO) by (52b) or (54a). As 
before s and t are given by (2), but u is now 

4 u =  2(1+ m 2 + mv)-4s (72) 

Using a definition similar to (15), one can define the double differential 
cross section 

02~ (s~ s~,sc)=o(s,t,u, so,s~,sO~(, 
Ot Ou '  o4c,21,(u 

(73) 

In the laboratory system, one finds 

Ozo , f l /Z(s , l ,m)f l /2(u,1,  m) 02o(s~,s h,sc) (74) 
Of~-~ 0% ts~, Sb, So) = 327rm Ot Ou 

It now follows from (71) and (74) when the integrations are carried out in 
the laboratory system that 

02O 
O~cO~o~ (so, so, s~) 

ct 2 f l /2(u,1,  m) ] 
8~rmt 2 ~ 1 1 - ~  J 
• sb) (75) 

Upon evaluation of the tensor products which appear in the above, one 
finds 

4 
L~"(sa,sc).ImHu~(q,b, sb) = Y~, ImHi(4t, v)L(s~,s,.)'Ti 

i=1 
(76a) 
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with 

L ( G ,  s~) .T l = - 8 m 2 t [ 2 t  +1 - su.s~] (76b) 

L ( s ~ , s ~ ) . T  2 = - ( 1 6 t [ s ( 2 s - 1 -  m 2 -  mp) 

+ rnv(m 2 + 1 ) / 4 +  (rn 2 - 1)2/8] �9 (1 - Sa'Sc) 

+ 2(mp)2(2t +1 - s~.sr 

+ 1 6 t ( s  - (m z + 1 ) / 4 ) ( b . s o a . s ,  + c. sub" sc) 

- 8tmvb. Ga .  s c - 4tm2c �9 saa" s c 

+ 1 6 t 2 b . s ~ b . G - 8 m Z t 2 ( l + G . s r  (76c) 

L ( G ,  sc)-T3 (s6) = 4m 3 [4t(s a. s b + s o. sc) 

+ ( q . s h ) ( c . s ~ - a . s ~ )  ] (76d) 

L ( G ,  sc) 'T4(so) = 2mq.sb[m~,(c .s  ~ -- a . G )  

+ 4 t ( b . s  h + b.sr (76e) 

Results in deep inelastic scattering for all polarization orientations of the 
electron as well as the initial nucleon may be obtained from (75) and (76). 
From these equations, one may also derive results for those phenomena 
which are dependent upon the electron's mass and which are associated with 
a change in the orientation of the electron's polarization vector. Further- 
more, polarization cross sections describing the elastic scattering of polarized 
electrons from polarized nucleons, and muons, and from spin-zero targets 
may be obtained directly from (76) as well. 

Toward this end, I begin with a discussion of the scattering in the 
relativistic limit of helical electrons from a nucleon of polarization s b. In this 
limit one may use the approximations Su --- ?~,,a, s~ = ?~cc, and a- c = 1 - 2t in 
(76) to find 

L (  su, sc). T 1 = - 16mZt2(1 + ~ )  (77a) 

L (  G, s~).T 2 = - 32/[s (s  - m 2 / 2 -  ml , /2)  

+ m2v(rn + p ) / 8 -  m Z t / 4 +  m4/16] (1 + X~hc) (77b) 

L(su ,  s~).T3(Sb) = 8m3t [(a + C)'Sb] (X~ + X~) (77C) 

L ( G , s ~ ) . T 4 ( S b ) =  - 4 m t q . s b [ m 2 - a s  + mu](X~ + Xc) (77d)  
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With the approximations (41) and the definitions (62) as well as 

d(at, v) = - 16m3 Im H3(4/, v) (78a) 

g(at, ~,) = - 8mlm H4 (at, v) (78b) 

one finds from (75) and (77) 

O2o(ho, s0, he) - a~,~c0(,,c) 
O~,,~O~ 8t% 

X [2W x (at, v )+co t2(8 /2 )w24t  , v] (1 + h~X~) 

az~fl( ~ )  [d(at ,  v)( a + c).s b 16~rmto~ 

+ g(at ,1,)rn(~ +o~c)q.sh]()~, + X~) (79) 

Various special cases may be obtained from (79) with particular choices of 
s 0. For example, with summation on the spin directions of the scattered 
electron and with s0= (0, +%),  and h~ =1,  one finds the difference for 
parallel and antiparaHel alignment of the electron and nucleon spin direc- 
tions 

= 
4rrmt r 

X [d(4t, v)(,~Q + *~ccos 0) 

+ g(4/,  v)m(6a a + ~oc)(~ a - ~ccos 8)] ( 8 0 )  

The cross-section difference resulting when the nucleon spin is parallel or 
antiparallel to the virtual photon direction eq is found from (63) and (79) 
with h a -- 1 and when the polarization of the scattered electron is undetected 
to be 

a2 ~c(~2_4t) - , /28(o~)  
41rmt ~ 

X [d(4t ,  1 , ) (~  - %2) 

+ g(at, g)m(oa, + ~a~)(~,2 - 4t)] (81) 

Another interesting cross section is obtained when a helical electron with 
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~ = 1 is scattered from a nucleon at rest which is polarized perpendicularly 
to the electron beam such that s b = (0, ~b • ,e~ • ). When the polarization of 
the scattered electron is undetected, one finds 

Of~a~Or C 81rmt ~o a 

• u)-g(4t, u)m(~% +~oc) ] (82) 

Interesting phenomena associated with a change in the orientation of 
the polarization of the electron may be found from (75) and (76) as well. As 
demonstrated in Appendix B where the lepton polarization tensor is repre- 
sented as the sum of two symmetrical gauge-invariant tensors and one 
antisymmetrical gauge-invariant tensor, the cross section for a change from 
perpendicular to parallel polarization is a first-order effect in the electron's 
mass, whereas a reversal of the electron's helicity is a second-order effect. 
Since these effects decrease with increasing s, they are more likely to be 
detected in the case of elastic scattering, which is described in the next 
section. Before turning to this case, I present here the result for deep 
inelastic scattering for the case when an electron initially polarized per- 
pendicularly to the beam direction is detected with helicity ?% = _+ 1 after 
being scattered from an unpolarized nucleon. In this case, one finds from 
(76) and (77) in the laboratory system 

a2o(+) a2o(-) 

4,,rot ~ / ( s , l , m )  0(~o~) 

x Jim H~(4t, ~,)8m2t( - ~oc)+Im H2(4t, v) 

• 4 

+ (m281)z}+2(mu)2+8m2t2)(-o~c) 

~/R (4,, ,)4tin2 [ o~o ( ~ - 1 ) + lal lr ~ccos 0o,. ] ] + Im 

x cos a sin Oar (83) 
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In addition to the results which have already been given for deep 
inelastic scattering, it is also possible to use the formulation developed in 
this section to derive the sum rule which has been given in Bjorken (1970). 
This rule relates the structure function Wz(4t, p) to the asymmetry parame- 
ter for deep inelastic scattering when the helicity of the virtual photon is 
either parallel or antiparallel to the spin direction of the nucleon. With A 
and P used to denote, respectively, the antiparallel and parallel alignment of 
the virtual photon's helicity and the nucleon's spin, one can use (59), (61), 
(62), and (65a) to confirm the identity 

o r-+ o L ~ 4t ] 

• [e*(P)-Im H ( q ,  b ) . ~ ( P )  

- e*(A).Im H ( q ,  b).e(A)] (84) 

where 

2o r = o e + o A 

One can also use (75) and a method similar to that used to derive (81) to 
show that the polarization asymmetry parameter 

( o2oA/atOu)-( o%/OtOu) /85a) 
c92oA/OtOu + 02op/OtOu 

becomes 

= 4 , )  - -  ~_ -o-~ ~---2 o L 

x[l+t oT )]1 
- -  ( 8 5 b )  

~aO) c "~ ~ OT'q- 0 L 

For the case of interest where o~ a >> o~ c and where p2 > - 4 t ,  the asymmetry 
parameter becomes 

___ oA - a e  ( 8 6 )  
o A + oe + 2 a L 
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In the scaling limit where W2(4t, v) becomes a function of a single 
variable, equation (84) can be used to show that 

cOO/oA-oe\ . 

Ulna "1o tO--7-~L) W2(4t'~)du=Z (87) 
- 4t  ---' oo 

where Z is a constant. As described in Bjorken (1970), the right-hand side of 
(79) may be converted, with the aid of an off-shell 3 function, into a relation 
involving integration over the commutator of the components Jx and Jy of 
the hadronic current. With the use of the quark model current algebra, the 
resulting expression may be evaluated. In this way, one can achieve an 
estimate of the magnitude of the polarization asymmetry parameter. 

5. ELASTIC SCATTERING OF POLARIZED ELECTRONS ON 
POLARIZED MUONS AND POLARIZED NUCLEONS 

Information regarding the polarization effects associated with the elas- 
tic scattering of a polarized electron from a polarized nucleon may be found 
directly from (71) and (76). When the tensors (54) are supplemented with 
additional gauge-invariant tensors, one can also derive information related 
to the polarization of the target after scattering. To demonstrate how the 
method works, I begin with a description of the elastic scattering of an 
electron from a spin-zero target. Returning to (71) and integrating over u to 
form 

o(s,t,s~,sc)= fo(s , t ,u ,s~,Sc)8(4u-(c-b)2)d4u (88) 

one finds the invariant cross section 

o(s, t, sa,sc) = ( otz/27rfl/Z(s,1, m)) f f dc d2rnuO( c) 

X 3(c 2 - 1 ) L ~ ( G ,  sc)Xm H~(q, b)/(t  2 + ie) 

Now with 

(89) 

(4/~r)Im Hl(4t, u) = - ( l / t ) ( 1 -  uz/4t)F2(4t)O(d)3(4t +2mu) 

(4/r Hz(4t, u) = - (a/t)FZ(4t)O(d)3(4t + 2m~,) 

Im H3 (4t, s,) = Im H4(4t, u) = 0 (90) 
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it follows that 

p .L(sa, sc). p = - ( l / t )  [(1 - t / m  2 )L(sa, s,.).T 1 

+ L(s~, so).7"2] (91) 

Finally, with the use of (76), one recovers the results (30) and (32). 
The elastic scattering of electrons and nucleons may be studied in a 

similar manner; however, for a complete analysis in which the polarization 
of the scattered nucleon as well as the polarization of the scattered electron 
is also detected, the expressions (76) must be supplemented with additional 
terms. To proceed, one observes that elastic scattering is described in terms 
of the amplitude 

<c, sc, d, sdlMla,s~,b, sb> = a f f ( d ) F u ( b ) . D ( t ) . J ( a , c ) e  (92) 

with D(t) given in (22). The relevant quantity which must be calculated so 
as to obtain the cross sections from (11) is 

L(sa,Sc)'M(Sb,Sd)nuc. = L~"(s~,sc)Tr[PdF~pbF,,] (93) 

where Pb and Pd are defined as in (26) and where 

F ~ = Gly ~ + G2p ~ (94) 

The form factors G x and G 2 are related to the electric and the magnetic form 
factors according to 

G 1 =Fm (at) ,  G 2 = 2m[Fe(at ) -  Fm(at)]/p 2 (95) 

with p = 2b + q. It is instructive to note that the nucleon polarization tensor 
may be expressed as the sum of gauge-invariant tensors in the form 

MS"(Sb, sa ).uc.= G ~M"~(s b , s d ) + G~ Tr[ PdPh ] P"P" 

+ GxG2(Tr[pdp"pby ~] +Tr[Pdy"php~]) (96) 

with 

where 

M~(Sb, Sd) = M~'"(0,0) + MS'"(Sb, sa)+ MA'~(sb, Sd) (97) 

M t'~ (0, O) = Tr[ pOd~,t'poby "] 

M S  "" ( s~, ~ ~ ) = Tr[po~r162 

gA""(Sb ,  Sd) = imE(tx ,  v, q, s b + Sd) 

(98a) 

(988) 

(98c) 
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The first two tensors are symmetrical in /~ and p, whereas the latter is 
antisymmetrical. A further reduction of (97) yields the more useful represen- 
tation 

M~'~(Sb, Sa)nur M~'~(O,O),,uc. 

+G~[MS~'~(Sd,So)+ MA~'~(Sb,Sd)] 

--G2[q'soq'sd + 2(m 2 -  t)Sb'Sa] p~'p" 

+GxG2[A~'~(sb, sd)-S~"(Sa,Sd) ] (99) 

where the antisymmetrical gauge-invariant t e n s o r  A~V(sb, Sd) is defined as 

-mA~V(So,Sd)=im[p"E(q,b ,  Sb + Sd, u ) 

-- p~E(q, b, s o + s a, ~t)] 

= (pE/4m2)T~'"(Sb+Sd)--T,~"(So--Sa) (100) 

and where the symmetrical gauge invariant tensor S~"(So, sa) is defined as 

s""(sb, sa) = p~Tr[~,"p0a~ap0_b~b] 

-- p~Tr[ Y~PO_b~bPoa~d] (101) 

As in the case of scattering from a spin-zero target, the tensor product 
(93) which appears in (89) may be obtained when s d = 0 from (76). This is 
accomplished with the aid of 

L(sa, sc).M (sb, 0)nut. = (4/r f d(2mp)L ""(so, sc)Im H~,( q, b, Sb) 

(102) 

with 

Im Hl(4t, p) = - (r +2mp)  

Im H2(4/, ~) = - (r - F~t/rnZ)6(at +2mp)  
1 - t / m  2 

Im H3(at, p) = - (Ir/8mZ)FeFm~(at +2mp)  

im H4(4/, ~) = _ (Ir/8mE)Fm(Fm - Fe)~(at +2mp)  
( 1 - t / m  2) 

(103) 
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It can now be seen from (98) and (99) that the cross sections for the 
scattering arrangement with averaging over the spin directions of the target, 
s b = 0, and with detection of the polarization of the scattered target is 
obtained in a similar manner; however, in this case, one must make the 
replacement s b ~ - s d in the coefficient of Im H4(4t, v) in (76a). 

For the case when the polarizations of both particles in the initial state 
are known and when both polarizations of the particles in the final state are 
detected, one must also evaluate the contributions from the tensor products 
p .L(s  o, s~).p, L(s  o, s~).MS(s b, Sd), and L(so, s~)'S(s b, Sd). The first con- 
tribution can be found from (91) and is given by (32). The two remaining 
contributions are rather long and may be found in Appendix A. 

Before proceeding to the specific examples for the various polarization 
configurations in the scattering of electrons and nucleons, it is worthwhile to 
consider the simpler case of the scattering of polarized electrons and 
polarized muons. This is a special case of (99), (102), and (103) with F,,(4t), 
= F e ( 4 t ) = l  so that one must evaluate L(so, s~).M(sb, sd), where 
M~V(Sb, Sd) is given by (97). In this case the square of the scattering 
amplitude which appears in (20) becomes 

~r t, so, Sb, Sc, Sd) = (a~r/t)2[ L(O,O)'M(O,O) 

+ LS(so, sc).g(0,0)+ L(0,0).MS(s , 

+ Z (so, sc).MA(sb, s,)+ LS(so, s ).MS(sb, 

With the aid of (54) this may be expressed in the form 

~r sa,sb,sc, s a ) = ( a ~ r / t ) 2 { ( - - 1 / 2 t ) [ L ( s a , s c )  

X(T1 + T2 +( t /m2)T3(so  + sa)]m . . . .  2, 

+ LS(so,Sc) 'MS(st , ,Sd)  } 

(104) 

All but the last term may be found from (76) and (102), and this term is 
given in Appendix A. 

Specific results for various polarization configurations may now be 
derived from the above. I begin here with the case when s b = s a = 0 which 
illustrates the effect of the scattering process on the electron's polarization 
vector. Although one could derive an expression for the polarization vector 
~ f  as is done in Section 3, I give here only the result for the invariant 
differential cross section from which the polarization vector of the electron 

(105) 
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after scattering can be obtained. Using (6), (8), and (20), one finds 

d--~~ (sa'sc)= ( ~-~ )f(s'l'm)( ~ ) 

X(A(s,t)muon(l+ XaX~) + f(s,l,m) + 6 ~ ) ~ X  c 

+ {[A(s,t)muon-8t2](cosacosflcos%,. + sinasinfl) 

281 

- 16t(s - 1/4)cos acos/3(1 + cos q%~) } ~ • ~ l 

+16c~176 (4s-l-m2)gb 4] -8-~ + ~o . x~ 

- 16 cos/3 sin q%~o~ [ (-4s - 1 - m2) ~ + 4 ] ~,. • 

(106a) 

with o~, and o~ and qooc given by (3) and with 

A(s,t)muon=16{[s-(m 2 + 1)/412+ st + t2/2} 

In the relativistic limit (106a) becomes 

--~ 4*rf(s,0, m) T ( , )muon 

x {1 + ~,a~.c + [1 

(106b) 

8t2 ]cos(a-fl)~.~,.• ) 
A(s,t)muon m,=O 

(106c) 

A number of interesting special cases may be obtained for states of 
pure polarization when the direction of the electron's polarization is changed 
upon detection. Of particular interest are the two cases where in the first 
~a- =Ac =1, Aa=~c• = 0  and where in the second case A~=I,  Ac = -1 ,  
and ~ • = ~c • = 0. The results for the first case may be read off directly 
from (106a). The result for the second case is conveniently represented by 
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the parameter 

do(+, - ) /dt  
P(s ,  ~c )  - d a ( + ,  - ) / d t  + da( +, + )/dt 

where in the c.m. system t is 
P(s, ~c) are given in Figure 2. 

- 4 t [ 1 6 s t + ( 4 s + m 2 - 1 )  2] 

f ( s , l ,m)A(s , t )muon 

(lo7) 
given  b y  (34). T h e  n u m e r i c a l  va lues  for 

1 0  

cl 
'0  6 

e.~ 
~ 5  
K 

x = 10}e= 8 

x=5,o,= 

o 20 4o 

I I I I I I I 
60 80 too 120 140 160 180 

q~,Jae %~ 

Fig. 2. The polarization parameter P(s, ~,,c) from Eq. (107) for the elastic scattering of helical 
electrons from unpolarized muons versus the scattering angle in the c.m. system %c. The 
quantity x is defined by (4s) 1/2 = xrn. 
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Another interesting case occurs in the scattering of electrons and 
muons with known polarizations s,,, and s b when the polarizations of the 
particles in the final state are undetected. In this case one finds from (105) 

do [ 4 ]  ~ 
-~  " (sa ' s~ ' )=  4 r r f ( ~ , l , m ) ( ~ )  

X( 16{[s-(l+m2)4]2+st+~} 

-4t  4 s - l - m 2 + f ( s , l , m )  

(4s - 1 + m2)(4s + 1 - m2)] 
d 

+ 2 m [ - cos( or - ~, ) + cos a cos "y cos 2 ( q0aJ2)] ~,,. ~b • 

+ (~bc~ a sinq~ -(rn~ac~177 II 
1} 

(108a) 

where o~a, o~b, and r are given in (3). Of special interest are the cases when 
) ' , , = ~ b .  =1,  )~h = ~ , , .  = 0  and when ~aj. = ) ~ b = l ,  ~b• = ) % = 0 .  These 
may be found directly from (108a). The relativistic limit of this expression 
for the scattering of helical electrons and helical muons of parallel and 
antiparallel orientations yields 

[ o ]2[( m2,2m2] --~-}-(l"t)=~r t(s_m2/4 ) u -~- )  +--4-t (108b) 

o ]2[( m2,2 m21 
u ~')= t(s-7,,V4) s-q-) +q-t 0O8c) 

To conclude the discussion of the scattering of electrons and muons, one 
may note that the case when one averages over the spin directions of the 
initial particles, s a = s b = 0, and detects the polarizations of the scattered 
particles may be obtained from (108a) with the use of the replacements 

~a -+ --~c'~kb--~--~d'Ot"'~fl''~--~,~bl ~ ~d-L' and ~ •  -+~c• 
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A similar analysis may now be applied to the case of the elastic 
scattering of polarized electrons and polarized nucleons. Since the general 
method has been well illustrated, I give here only the results for some of the 
simpler special cases. Firstly one may recover the well-known result for the 
scattering of unpolarized particles when the polarizations of the particles in 
the final state are undetected. This result is found from (20), (76), (102), and 
(103) to be 

do (s, t) = ~ra2 A(s ,  t)nuc,. (109a) 
dt t 2 f ( s , l , m )  

with 

A(s,t)nucl.  = 
16 

(1 - t / m  2) 

{ [ ' (m2+1)2] 
• F~ z - s u - - ~ +  16 

 t)I ,m2 / 
- F 2 --~ - s u -  --~- 1 - ~ -  7 + 16 

(109b) 

In the relativistic limit, one finds in the laboratory system from (17), (41) 
and the above the Rosenbluth formula 

do( s ,  t )  ot2cos2 (0/2) 

d~ac )Ros. = 4t%2sin4(O/2)[l+(2r 

X 
F~ - F,12, ( t / m 2 ) 2 F.2 t ( 0 ) ]  

1 - t / m  2 rn 2 tan2 (110) 

The result for the general elastic scattering situation in which the initial 
polarizations are known and the final polarizations are detected may be 
found from (20), (76), (99), and (103). In this case the invariant differential 
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cross section becomes 

d___aO(s~,sb,sc, sa ) 1 ( 7 )  2 
dt 4~rf(s, l ,m) 

• { - F2L(s~'sc)'T12t F~-(t/m2)FmZl - t / m  2 L(s~'s~)'T22t 

F.FmL(so,sc)'r3(sb + s~) 
2m 2 

- F.,(F.,- F,)L(so, sO.r4(sb- s~) 
( 1 - t / m 2 ) 2 m  2 

+ C?L(so, sc)'MS(sb, s~) 

-G~[ q'sbq's a + 2(m 2 -  t)sb.sa] p.L(s~,sc) ,  p 

- G,G2L(s ~, sc)'S(s b, Sd) I 
) 

7111s ~ ~ 2 1  

(111) 

In this expression, the tensor products L(s~,sc).T ~ come from (76), p. 
L(s~,sc). p is found from (91), and the remaining terms are given in 
Appendix A. In the relativistic limit for the scattering of a helical electron, 
one finds from the above and (77) with mv +2t  = 0 for the case when the 
final state polarization of the nucleon is undetected the result 

[ - (x" ' sb '  7%) = 47rf(~,0, m) 

X Fe28m2t(l+XaXc)+ ( F ~ - F , , I / m - )  
(1 - t / m  2) 16 

x s - - -  4- + s t -  1-~__  (l+?%Xc) 

- FeF,,4rnt [(a + c).sb] (h a + Xc) 

+ Fm(F m - Fe)(2t/m ) 
(1 - t / m  2) 

q.sb[2(u - s ) ] ( X  a + )%)) 

(112) 
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In conclusion, one notes that cross sections related by the use of 
crossing symmetry to the ones derived above provide a description of 
analogous phenomena which occur in the scattering of polarized electrons 
and positrons. Furthermore, since the polarization cross sections which have 
been presented here depend only upon the well-established properties of the 
electromagnetic interaction and since they are independent of any particular 
speculations about the internal structure of the nucleon, they may be used 
to verify predictions of models which provide explicit representations of the 
structure functions. Especially interesting are those models which represent 
the structure functions in deep inelastic scattering (Kuti and Weisskopf, 
1971; Domokos et al., 1971; Schwinger, 1976a, b). A discussion of these 
models may be found in Appendix C. 

A P P E N D I X  A: TRACES 

The direct evaluation of the traces which have been used for deriving 
various cross sections may be accomplished in all cases considered with the 
methods described in Garavaglia (1975) and with the exchange operator 
method which I describe here. The latter method is demonstrated with the 
evaluation of T( c, a ). T( d, b ), where 

One may write 

T~'"( d, b) = Tr[ Poa y~'pohy ~] m=, (A1) 

T~"( d, b) = P( db )d~b ~ (A2) 

where the exchange operator P(db) is defined as 

P(d ,b)  =1 +(12)d b + G(d,b)  (A3) 

with 

(12)dbd"b" = b"d"; G(db)d~b ~ = g~"(1 - d.b) (An) 

It now follows that 

T(c, a).T(d,  b) = [1 + (12)a ~ + (12)c, + (12)ab(12),.~ 

+ [1 + (12)c,~ ] G(db)+ [1 + (12)db] G(ca) 

+ G(ab)G(ca)] a~'b~q,a~ (A5) 
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which yields 

T ( c , a ) . T ( d , b ) = 2 [ d . c b . a + b . c d . a + e - d . b - c . a ]  (A6) 

A complete description of the polarization phenomena associated with 
the exchange of a single virtual photon in the elastic scattering of electrons 
from muons and nucleons is accomplished with the additional tensor 
product which is given here. The last tensor product in (105b) becomes 
upon evaluation 

L S ( s  a , s o ) . M S ( s  h , Sd) = -- Sa" s cL (O ,O) .MS(sb ,  S d ) -  s h" SdM(O,O ) .LS ( s~ ,  sc) 

- so.s~sb.saL(O,O).M(O,O) + r(abcd) (A7a) 

The first three terms are found from (76), and the last term is 

F ( a b c d )  = 2 a ' b a ' s c [ b ' s d s ~ ' s  b + q'sbs~'sa] 

+ 2a" be. sa [ b. SdS b" s~ + q" ShS ~" S d ] 

+ 8/2[S a.sbs c'S d + S a.sdS b'Sc] 

+ 2[a . scb . s~  + c .s~b.sc]  

•  a + a ' s d q ' s h ]  

-- 2a" ScC" Sab" Sdq" S b 

+ 4 t {  a . s~[a . sds~ . s  b + a'SbSa'Sd] 

+ C ' s , [a ' sbs~ ' s  d + a'SdSb'S~] 

+ b ' s d [ b ' s c s ~ ' s  b + b'S~Sb'S,. ] 

+ q ' sh[b ' s~s~ ' s  d + b 'scs~'sd]  

+ b . sd[a . s~s~ . s  b -  q. SbS.S~] 

+ a 'sr  b -- C'SaSb'Sd] } (A7b) 

The symmetrical tensor S""(sb, sa) defined in (101) can be written 

S~"(st,, s a ) / m  = 2p"p"sb.s  a 

- ( p"s~ + p"s~) q . s  b + ( p"s~, + p~s~ ) q ls d (AS) 
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and it satisfies q~S~(sb, Sd) = O. From the lepton polarization tensor (B4), 
one can now find 

L(sa ,  sc) 'S(Sb,  sd )12m = p "L(sosc)'PSK sd 

- p. [ L(0,0) + LS(s~,  so) ] .saq. s b 

+ p . [ L ( 0 , 0 ) +  LS(s~,s , . ) ] . sbq.s  a (A9a) 

with p .L(so,  so). p given by (32) and with 

p.  L(O,O).s a = 2[ a .b (  a + c) . s  a + ( a + b ) .sd2t ] (A9b) 

p .LS(su ,  Sc).S a = - so.sop .L(O,O).s a +2a.sc[c .Sdb.S~ + a. bs,.sa] 

+ 2c . so[a . sab . s  c+ a 'bsdsa]  

+at  [(a + b) 'scso's  a + b ' susc ' sd] -2a .ScC.Sob .s  d 

(A9c) 

APPENDIX B: THE RELATIVISTIC LIMIT 

Representations of cross sections which involve the lepton polarization 
tensor L~'(sa, so) may be found in the relativistic limit, m e / s  = O, with the 
method described in this appendix. Firstly, one observes that in this limit 
the polarization density matrices Pu and & may be reduced to a simpler 
form. To illustrate this, one notes that the polarization density matrix & for 
an electron moving in the direction eu may be written 

with 

(~l-Fme) (1 + ~ /5  ) (B1) 
P~= 2 

S a = ( a 3 ) k a / m e ,  a~ ) 

~ = a+3,- + a-~, + 

+ 
s a = s a •- + s:'y+ - s a j  - "'y• 

a + = ( a ~ 1 6 2  a - = ( a ~  

s:  = ( s  o + = (sO- 

where 

(B2a) 

(S2b) 

(S2c) 

(B2d) 

(B2e) 
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In the relativistic limit a -  vanishes, and since 3' 3' = 0, one finds with 
-~ a + 3'- and Sa = a+ 3'- ha + $ , .  the result 

2p~ = r +(?% + Sa-)3'5] (B3) 

A similar expression may be found for Pc, and the representation of the 
lepton polarization tensor is found in this limit with the use of these 
approximations for the polarization density matrices. It is instructive to note 
that the properties of 3'5 permit one to write the lepton polarization tensor 
(24) as the sum of three gauge-invariant tensors 

L ~ (0, 0) = Tr [ Poc3't'Poa3' ~] (Baa) 

LSt '~(s~,  s~) = Tr[ poj;c3'~po_ a r ~ ] (B4b) 

LA"" ( s~ ,  s~) = - i E ( g ,  ~, q, s a + sc) (B4c) 

The first two tensors are symmetrical in g and v, whereas the latter is 
antisymmetrical. A particularly simple result is found for helical electrons 
where s a --- Xaa, and s~ = 2tcc so that 

L~(X~,  h~) = [2(a~a ~ + g ~ t ) -  a~q ~ - a~q ~] (1 + h~hc) 

+ (X,, + X c ) i E ( g ,  ~, a, q )  (B5) 

For scattering processes in which a change is detected in the orientation 
of the electron's polarization, one can use (B4) to show that the cross section 
for an electron initially in a state of perpendicular polarization to be 
detected after scattering in a state of parallel polarization is proportional to 
m e, whereas the cross section representing a reversal in the direction of the 
electron's helicity is proportional to me 2. This is seen with the aid of the 
approximations 

~c = (~cll, ~c• ) (B6a) 

Scl I ~ ( Tkc/me) r + ~cme~ (B6b) 

e = ( - 1 / 2 c ~  (B6c) 

For the first case when ~ • = k, c = 1 one finds 

4Tr[ POc~cllyt~pO_a~a• 3'v] = me2Tr[ #cllYg~a• 3"p] 

(B7) 
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where both terms are proportional to m e since r162 = m e z. For the second case 
when h a = - h C =1, one finds 

4Tr[ POc~cllY~Po_a~al,] = meZTr[ ~cllY~a,l T'] 

(B8) 

Following a similar method, one can see that in this expression there are 
zeroth- and second-order effects in me; however, as can be seen from (BS), 
the zeroth-order term vanishes for a reversal in the direction of the helicity. 

APPENDIX C: STRUCTURE FUNCTIONS 

In this appendix, I review two different approaches to the problem of 
calculating the structure functions which occur in deep inelastic scattering. 
The discussion is restricted to the case of the scattering of unpolarized 
particles; however, it can be readily extended to cover the more general 
case. 

I begin with an outline of the well-known quark model which is 
described in detail in Kuti and Weisskopf (1971). In this model, it is 
assumed that a nucleon at rest consists of three fractionally charged 
sp in- l /2  particles which carry the internal quantum numbers of SU(3). 
When the nucleon is moving with high velocity, these valence quarks are 
accompanied by a collection of quark-antiquark paris. The interaction of a 
high-energy electron with a nucleon is interpreted as resulting from the 
interaction of the electron's virtual photon field with the quarks in the 
nucleon. Associated with each quark is a current of the form 

j (  p, •), = e,~( p, ~,),.7"u( p, ~,), (C1) 

where e i (i = 1, 2, or 3) denotes the fractional charge on the three different 
types of quarks. It is assumed that the momentum of each quark is a 
fraction of the total momentum of the nucleon such that pi = xib.  The 
differential cross section for the scattering from a quark of index i is found 
from (74) and (A1) to be 

OtOr = -  Y] e2iGi(w) (C2) 
i =1  

where to = - ( 2 m u / 4 t ) .  In the high-energy limit one can use (75) to show 
that 

torW2(4t ,  t,) = ~' .e~Gi(  to ) (C3) 
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and the structure function becomes a function of the single scaling vari- 
able to. 

In the equations above, the functions G~(to) represent the probability 
distribution for the momenta of the quarks. These can be calculated if one 
assumes that the distribution for the longitudinal momenta of the core 
quarks is given by 

dPc( x ) = g dx( x 2 + m2/b2 ) -1/2 (C4a) 

and that a similar distribution for the valence quarks is given by 

dPt,( x ) ~ x l - a ( ~  x2  -I- mZ/bZ )- l/Z dx (C4b) 

where the Regge form appropriate for inelastic scattering is used. With these 
expressions, the distribution for an n-quark state with three valence quarks 
and n - 3  quarks and antiquarks in the core pairs becomes 

' f l  X 1-'lx~ -~'(~ dx j (x  2 +mZ/bZ)  -1/2 
i=1 j = l  

(C4c) 

where Z is a normalization constant and where gk /k !  is a statistical factor. 
The functions Gi(to) are found when (C4c) is integrated with the aid of an 
exponential representation of the ~ function. In this way, one finds expres- 
sions for the spin averaged as well as the spin-dependent structure functions 
which depend upon the parameters a(0) and g. With a suitable choice for 
these parameters, one finds reasonable agreement with the experimental 
data. 

A less well-known approach which also leads to scaling and to explicit 
representations of the structure functions for deep inelastic scattering is 
described in Schwinger (1975a, b; 1976a, b). In the remainder of this ap- 
pendix, I give a brief description of this approach. For this method, the 
basic physical assumption is that information about the structure functions 
in the deep inelastic region can be obtained as the result of a smooth 
extrapolation of information from the resonance region for electron-nucleon 
scattering as well as from the region which pertains to photon absorption. 
The principal mathematical assumption is that the structure functions can 
be represented as a double spectral integral. This results in expressions of 
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the form 

= [ [  dMZ+ dM z_ 2hi(M2+, M 2 j j  _) 

x [ ( q + b ) 2 - M 2 + + i e l - ' [ ( q - b ) 2 - M 2 _ + i e ]  -1 (C5a) 

Applying the integral transformation 

( l /x)  = f0~ 

to the second term in the denominator and extracting the imaginary part, 
one finds after integration 

ImHL2(4t,~,  ) (M2+l)2j of d~jexp ~j hE2 

Information about the properties of the functions h~(~) may be ob- 
tained from the known behavior in the region near elastic scattering as well 
as from the region appropriate for photon absorption. In the first case, one 
can show that 

F 2, F 2 - ( t / m 2 ) F 2  =fo~176 (C6a) 
1 - t / m  2 

Experimentally it is known that the functions Fe(4t ) and F.,(4t) are rea- 
sonably represented by the function 

F/(4t) = F ~ ( 0 ) ( 1 - 4 t / m 2 )  -2 (C6b) 

with m o = 0.9m. For - t >> 0, this yields the result 

h~,2(~) - 4 3 

for ~ < 1. In passing, one should note that the same result is found for h3(~) 
and h4(~ ) if H3(4t, 1,) in (76a) is replaced with (1 - t /m2)H3(4 t ,  u). From 
an analysis of the high-energy behavior of the photon cross section, one 
concludes that a similar function/~2(~) is appropriate for this process and 
that it behaves as/~2(~) - 1 for ~ >> 1. 

For deep inelastic scattering, both 2 p / m  and - 4 t / m  2 are large and 
to > 1. In this domain M 2 - (to - 1 ) ( - 4 t ) ,  and it follows from (C5b), (59a), 
and (61) that 

o = o r + oz. = - (rret / t ) f2( to)  (C7a) 
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with 

~  fz(r176 r exp (r  h i (~ )d~  (C7b) 

The extrapolation which connects the deep inelastic phenomena with 
the phenomena which occur in the resonance region is made if one identi- 
fies the function hz(~) in (C7b) with the hz(~ ) that occurs in (C6). This 
suggests the replacement 

- 4 t / m  2 ~ (r -1 

which is to be made in Fe(4t ) and Fm(4t ) which occur in (C6a) and (C6b). 
For electron-proton scattering, this leads to the result 

~o(~o- 1) 3 (~o +0.95) 
f e (~  (~o +0.2) 4 (~o-0.75)"gi(~~ (C8) 

with 

g1(~o)=1+1.4(~o-0.75) -I/2, ~o>3 

g2(o~) =1 + 1.15(~o - 1)-0.34(o~ - 1 )  2, o~ < 3 (C9) 

function gl(w) is suggested from the high-energy behavior of the The 
photon absorption cross section, and it is assumed that this function is valid 
for values of r down to 3. The function g2(r results from a smooth 
quadratic extrapolation to the value o~ =1 such that fp ( r162  3 as 

~1 .  The functions gx(~) and g2(r as well as their derivatives match at 
r = 3. As in the case of the quark model, one finds with the present method 
that the structure function 

Wz(w ) = (1/~ru)fz(r (C10) 

is in good agreement with the experimental results when w is replaced with 
an improved scaling variable. From the above discussion, it is clear that the 
quark model, although frequently used for the interpretation of the experi- 
mental results for deep inelastic scattering, is not the only physically 
appearing theoretical approach to the understanding of these phenomena. 

NOTE ADDED IN PROOF 

The methods developed in this paper have been applied to other 
polarization phenomena, and they have been extended to include the 
electroweak interactions of neutrinos and electrons. These applications may 
be found in: 
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Garavaglia, T. (1980). I 1 Nuovo Cimento, 56A, 121. 
Garavaglia, T. (1980). Lettere al Nuovo Cimento, 29, 572. 
Garavaglia, T. (1983). Physical Review (in press). 
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