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A covariant formulation is developed and used to derive cross sections for the
analysis of experiments in which polarized electrons (muons) are scattered from
spin-zero and from polarized spin-1/2 targets. The analysis is based upon the
single virtual photon representation of the electromagnetic interaction, initially,
neither high-energy nor low-energy approximations are made so that one may
derive results in which the orientation of the polarization vectors of the interact-
ing particles changes as a result of the scattering. The general formulation is valid
for all polarization configurations for the electron and nucleon in deep inelastic
scattering, and for all polarization configurations for the initial and final state
particles in elastic scattering. From the general covariant results, specific cross
sections are derived for deep inelastic scattering as well as elastic scattering of
electrons on muons, nucleons, and spin zero targets. In the latter case, the actual
polarization vector for the scattered electron is determined. In the other cases
discussed, this vector may be obtained from the cross sections. In addition, a
method is presented for defining covariant cross sections, and this method is
used to obtain results in the center-of-mass system as well as the laboratory
system. Furthermore, explicit cross sections for virtual photon absorption are
derived. Finally, in the appendices, an alternative method for the evaluation of
traces is given as well as a discussion of the relativistic limit.

1. INTRODUCTION

In the early part of the century Rutherford (1911) presented a theoreti-
cal picture of nature that stands as one of the major milestones in the
evolution of the physical description of matter. This early picture was
confirmed by experiments in which low-energy a and B particles were
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scattered from atoms to provide a startling description of their internal
nuclear structure. Throughout subsequent years, these theoretical and ex-
perimental ideas were developed so as to provide a clear understanding of
the internal structure of the nucleus. Today high-energy electrons are hurled
from giant machines like thunderbolts from Zeus to act as probes into the
deep internal structure of the nucleons.

At present, techniques have been developed to the point where polarized
beams of the electrons can be used to bombard polarized targets (Alguard
et al.,, 1976a,b). Experiments involving the collision of polarized particles
are of current interest (Hand, 1977) because they provide valuable informa-
tion about the structure functions which characterize the fundamental
nature of the electromagnetic interaction. The basic interaction which
unifies all of these processes over an exceedingly wide range of interaction
energies is one mediated by a single spacelike virtual photon. It is my
purpose in this paper to present a unified and covariant formulation to aid
in the interpretation of experimental polarization phenomena which are
associated with this basic interaction. This formulation is valid for all
polarization configurations which can occur for the initial and final state
particles in the elastic scattering of electrons from spin-zero and spin-1/2
targets; furthermore, it applies as well to the case of deep inelastic scattering
where the initial electron and nucleon have arbitrary polarization and where
the polarization of the scattered electron is detected. Since the formulation
is developed in a covariant manner, it can be used to illustrate the common
features of polarization phenomena which occur as a result of the single
virtual photon exchange and which are observed from nonrelativistic to
ultrarelativistic energies. Of particular interest are those phenomena which
are associated with a change in the orientation of the electron’s polarization
and, in the case of elastic scattering, the target’s polarization. Since these
effects decrease with increasing interaction energy, their detection at high
energy represents a clear challenge to experimental technique and precision.

I begin in Section 2 with a description of the kinematical variables and
coordinate systems which are useful for the representation of polarization
phenomena. Also in this section, I discuss how one defines various covariant
cross sections which provide the direct connection between experimental
information and theoretical formulation. Section 3 contains the results for
the elastic scattering of a polarized electron from a spin-zero target. Both
low- and high-energy limits are obtained and discussed in terms of the
actual polarization of the scattered electron. The principal development in
this paper is found in Section 4 where the polarization effects associated
with deep inelastic electron—nucleon scattering are discussed. Also in this
section, one finds an interpretation of this process in terms of the absorp-
tion by the nucleon of a spacelike virtual photon. In Section 5 elastic
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scattering of polarized electrons from polarized muons and from polarized
nucleons is described as a special case of the previously developed inelastic
process. The modifications required to provide a description of the polariza-
tion effects associated with the scattered target are given also in this section.
Although much of the tedious algebraic reduction, in particular, the evalua-
tion of traces, has been done with the aid of electronic symbolic computa-
tional methods (Hearn, 1973), alternative instructive methods for the
evaluation of traces maybe found in Garavaglia (1975) as well as Appendix
A. Also in Appendix A, some of the longer results occurring in elastic
scattering are found. Finally, an alternative procedure to the one used in the
main text for obtaining relativistic limits is described in Appendix B.

Useful introductory discussions of polarization phenomena may be
found in Beresteskii et al. (1971) and Schwinger (1970). More detailed
information may be found in Dombey (1969), McMaster (1961), and
Fradkin and Good (1961). Good insight into the processes involving un-
polarized particles may be found in Drell and Walecka (1968). Throughout I
have used natural units (A=c=m,=1, a=-e?) and the four-vector, y
matrix, and bispinor conventions of Beresteskii et al. (1971).

2. KINEMATICS AND CROSS SECTIONS

In this section, I describe the kinematical variables and their relation-
ships which are used in the subsequent analysis. As well I outline the
general method for defining the various cross sections which are used to
characterize the scattering situations which are considered. I begin with a
description of the scattering process represented in Figure 1. This process
represents an interaction in which particles characterized by four-momenta
a and b interact as the result of a single virtual photon exchange to yield a
particle characterized by four-momentum ¢ and a collection of N particles
characterized by four-momentum D =YY, p,. For this process, energy-
momentum conservation is represented as

g+b=D, gqg=a-—c (1)

Q’ ‘&C

<b:CL*C

b D

Fig. 1. The single virtual photon exchange in electron-nucleon scattering.
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where a typical four-vector is represented as a = (a°,a) such that a® = (a°)?
—a-a=m2. Elastic scattering is represented by (1) and the condition
D =d. The interaction channels are defined according to the invariant
quantities

4s=(a+b)
4t=(a—-c)
4u=(a—d)’ (2)

which satisfy the equation

As+t+u)y=s>+b>+c2+d?
The four-momentum of the virtual photon is denoted by g, which is defined
in (1).

In the center-of-mass system, one finds the invariant expressions for
energy, momentum, and scattering angle

&, =6E(s,a,b)=(4s+a*—b*) /45" (3a)
&,=6(s,b,a), &E.=6(s,c,d), &,=6(s,d,c)
lal=b| = [/(s, a,b)/165]'/* (3b)
el =1l = [f(s.c.d)/165]"
cos g, = (4t —a’—c?+26,6,)/2lalc| (3c)
with
f(s,a,b)=[ds = (m,+m,)|[4s = (m,— m,)’] (3d)
or
f(s.a,b)=4[(a-b)* - a%?]
In the laboratory system, the corresponding relations are
w,=w(s,a,b)=(4s—a*-b*)/2m,
wy=my, w.=—wl(ucbh), w;=-w(tdb) (4a)
la|=f"*(s,a,b)/2m,,  p|=0

el = f**(u,c,b)/2m,,  1d|=f1*(t,b,d)/2m, (4b)
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In this case, the scattering angle is denoted by 6,., and it is found from the
expression

cosf, = [2b%(4t — a? — ¢?)
—(4s—a* = b))(4u—-b>— )] /[ f(s,a,b)f(u,c,b)]'?

The principal concern of this investigation is a description of the
polarization properties associated with the scattering process depicted in
Figure 1. These properties are described with the use of four-vectors which
characterize the polarizations of the interacting particles. For a spin-1/2
particle characterized by four-momentum a, the polarization vector §, is
defined to be twice the mean value of the particle’s spin vector in its rest
frame, i.e., §, = 2(S). The components of the vector §, are defined in the
rest frame of the particle relative to the unit vector e, which is in
the direction of the particle’s momentum in the frame of observation. The
component of §, parallel to e, is denoted by A,, whereas the component
perpendicular to e, is denoted by §, , . The polarization vector satisfies the
condition £, <1 where equality represents a state of pure polarization and
where inequality represents a state of partial polarization. The polarization
four-vector associated with §; is a spacelike four-vector obtained from the
three-vector as the result of a Lorentz transformation in the direction e,.
This four-vector is represented by

so= [(lal/ma)\,.8.] (5)
with
sa = (ao/ma)}\aeu + guleal

The polarization four-vectors for other spin-1/2 particles are defined in a
similar manner.

For the scattering of an electron of unit mass in the initial state |a, 5,)
to the final state |c,s.), the four-vectors s, and s. are given in the
center-of-mass (c.m.) system as

s, = (lalA,,s,)
se=(laIAs.) (6)
with
sa = ga}\aea + ga.Leu.L

sc = g’aAcec + £ciec.L



256 Garavaglia

The unit vectors e,,e,, and e_,e,, are defined relative to the coordinate
systems S, and S,, which are defined as follows: The system S, is a
right-handed orthonormal triad defined by the unit vectors

€

‘a’

€= (ea Xec)/sin Pacs and € =€ Xea (73)
The system S, is defined similarly in terms of the orthonormal triad

e, ¢, ande. =e,Xe, (7v)

Viewed in a direction antiparallel to the momentum a, the vector e, , lies in
the plane (e;,e,) and makes an angle a with the direction e;. With a similar
definition of the angle 8 between e., and e;. in the system S, one finds

€, = Cos pe, +singpe,;
e, = —singe, +cos pe,
e, =cosae, +sinae,
e, , = cosfcos pe, +sin Be, —cos Bsinge, (8)

For the elastic scattering in the c.m. system of an electron and a
spin-1/2 particle of mass m with the initial state |b, s,) and with the final
state |d, s, ), the polarization four-vectors s, and s, become

5= [('an))‘b’sb]
sq=[(Rl/m)Xy,8,] 9
with
sp=(E/m)Aye, +§,,€,,
sq=(&/m)A s+ &, €5,
The corresponding unit vectors are given by
e,=—e¢, e,=—e€
e, , =cosye, +sinye,
e, , = cos8cospe, +sinde, —cosSsinpe, (10)

where vy and § are the angles measured from e, and e,., respectively.
The confrontation between theoretical analysis and experimental phe-
nomena is accomplished with the aid of various differential cross sections
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which may be found from a conventional definition (Kéllen, 1964) of the
invariant total cross section for the interaction of two particles in the states
la, s,> and |b, 5, ), respectively, and the subsequent production of an n-par-
ticle final state where each particle is characterized by a momentum and
polarization state | p;, 5;).

This cross section is defined as

1
2f1%(s, a, b)(27r)3"_4

O(5,1,U,5,,5p,Spy0-0) =

><fdpldpz---dp,._l—[ls(p?—m?)ﬂ(p,-)
i

X8

n
a+b_ Z pi)'/”(s’ta u,Sa,Sb,S(.,...)
i=1

(11)

with

1/2
0(p)=[(p%70)+1]/2,  w=(pI>+m?)"”,
and A (s,t,u,5,,5p,S.5...)=(fIM]a,s,, b,s)*  (12)
where (f|M|a,s,, b,s,) is the transition amplitude from the initial to the

final state. In the definition (11), one uses the invariant measure in momen-
tum space,

dp __0(p)dpd(p*—m?)
(27)20 (27)’

(13)

One also uses an invariant definition of the flux which is represented as the
magnitude of the relative velocity [v, —v,| in the c.m. system. With the aid of
(3), the flux becomes

=fY%(s,a,b)/26,8, (14)

Particular differential cross sections may now be obtained from (11). Of
special interest is the differential cross section defined formally as

‘;?(sa,sb,s(,sd) do(s, ¢, sa,sb,sc,sd)8[4t—(a—c)2] (15)
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For scattering into the solid angle d,., one finds from (15) for elastic
scattering in the c.m. system

do dt

27 1 \do
dQC.m‘ (Sas SpySes Sd) - _(ﬁ)z(sa)sb, SC,Sd)m (163)

which with (3) becomes

do do
d_ﬂc_;(smsb!sc’sd) 6477Sf1/2(s a, b)fl/z(s c, d) di (Sa,Sb,Sc,Sd)

(16b)

The corresponding differential cross section in the laboratory system
may be found from (4) and (11) in a similar manner, and it becomes

do _ —1/(s,a,b)*?(u,¢c,b) da
dQlab (sa'sb’sc’sd) ZWg(S t,a,b,c,d) (Saish’sc’sd)

(17a)
with
g(s,t,a,b,c,d)= 4{(4u — ¢ - b?)[2b% (4t — a? - ¢?)
— (4u—c? — b?)(4s — a® - b?)]
+(4s—a’+ bz)(4u ~(m,+ mc)z)

(4u—(m,—m.))} (17b)

For the elastic scattering of an electron of unit mass with a particle of mass
m, one finds the useful expression

g(s,t,1,m,1,m) =128m2[s2 +st—s(m*+1)/2
- t(m2=1)/4+(m?~1)’/16]  (18)

The integration indicated in (11) and (15) when there is a two-particle final
state characterized by four-momenta ¢ and 4 is performed in the c.m. system
with the momentum space measure

dc® | dd’
de dd = fe|*dje| dt.~ < dd =3 19a
feldc] 520 (19a)
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and with the aid of the & functions §(a+b—c—d)=8((4s)*"*>— -
d®)8(c+d). After integration over d2, ¢?, and d, one then integrates over
cos ¢, and finally over |c| with

leldje| = c%d%(c® +d°) /(c° + d°) (19b)
to find
1

do
_d_t(sa’sb’sc’sd)"‘m‘/{(s’t’sa’sb’swsd) (20)

For all of the cross sections so far defined, when s denotes the
polarization four-vector for a spin-1/2 particle, averaging over the spin
directions in the initial state is accomplished with s =0. For a spin-1,/2
particle in the final state, the summation over the spin directions of this
particle is accomplished with s =0 and with the cross section multiplied
by 2.

3. ELASTIC ELECTRON SCATTERING ON A SPIN-ZERO
TARGET

In this Section, I describe the elastic scattering of an electron on a
spin-zero target. This example is simpler than the others that are considered,
and it is useful for pointing out the physical effects and the analytical
techniques which are similar to those that occur in more complicated
interactions.

This analysis is based on the scattering diagram in Figure 1 where an
electron initially in the state |a,s,) interacts with a spin-zero target of
four-momentum b and mass m. The scattered electron is represented by the
state |c, s.), and the final state of the target is represented by the four-
momentum 4. The polarization four-vector s, represents the polarization
which is accepted by the detector. The polarization four-vectors s, and s,
satisfy the conditions s,-a=s,c=0, and —s5,” <1, — 5.2 <1, where for the
second pair equality represents a state of pure polarization. The transition
amplitude for this process is represented in momentum space in terms of the
electron current J(a,c),, the hadron current J(b,d),, and the photon
propagator D, (1) as

(c,d|M|a,b)=aJ(a,c), D(4t)-J(b,d), (21)
where
J¥(a,c),=u(c)y"u(a)
J'(b,d),=F(4t)p*; p=2b+gq
D,,(4t)=mg"/(t + ie) (22)
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According to the definition (12), one finds
2
s (5,1,8305) = | T (5,000 23

where the gauge-invariant lepton polarization tensor L*’(s,, s,) 1s
L¥(s,,5.) = Tr[pr'e,y’] (24)

In this definition, the polarization density matrix for an electron of four-
momentum a is defined as

(Pa)ij=“i(a)'7j(a) (25)

such that Trp, = 2.
This matrix may be expressed in the covariant form (Michel and
Wightman, 1955)

P, = Poal(1+£,7°) (26a)
with
Poa = (4+1)/2 (26b)

After evaluating the trace in (23), one finds the invariant differential
cross section from (20). It is now possible to write this cross section in a
form which brings out the physical influence of the interaction on the
scattered electron’s polarization vector. This is accomplished if one writes
(23) in terms of the actual polarization four-vector s/ of the scattered
electron. The polarization density matrix p/ associated with the four-vector
s/ may also be represented in the form (26). When p, is similarly repre-
sented, it characterizes the polarization accepted by the detector. Since the
probability for detecting the polarization represented by s, is equal to
Tr{p/p,], one can conclude from (24) that p/ is proportional to py. pp, PPy,
so that p/(1— ¢) = (1— ¢)p/ = 0. With both p, and p/ represented as in (26)
and with the condition p,. = p,,, it follows that

2

Trole] = 2(1-s/-5.) = 260, Tr{ p. po, #] (27)

Using the reduction of L*"(s,,s,) in terms of the gauge-invariant tensors
given in (B4), one can show that

p-L(s,,5.)-p=A(s,t)o+ p-LS(s,.5.)'p (28)
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with
A(s,1)o=p-L(0,0)-p =8[(s — u)*+(m? = 1)1] (29)

The components of s/ can now be found as the coefficients of the compo-
nents of s_ in the expression

sdse=—p-LS(s4.5.)-p/A(s,1)o (30)

Returning to (23), one finds that the invariant differential cross section may
be written in the form

de _[amF(41) |2 A(s,t)
ar Sa’sc)_[ ! ] 4'nf(s,1,m)(1_s‘!.S‘) (31)

Upon evaluation of the trace in (30), one finds the invariant expression

scf~sc=sa~sc—A( [(4s -1)(a-sb-s,+b-sc-s,)

+4tb-s,(a-s.+ b.sc)—mza-scc-sa] (32)

One may now use (31) and (32) to obtain information about all
polarization configurations which can occur for the initial and the scattered
electron. If one notes that in the rest frame of the scattered electron
sJ-s,=—§/ &, then he may find the components of the vector £/ as the
coefficients of the components of §.. To find these components, one writes
s, and s, as in (6) and uses (32) to obtain

2 _ 2
)\f=[1+ 16¢(4s + m? —1) }

¢ f(s,1,m)A(s, 1)

4s —m*—-1)(4 2_1) .
+ l( s msmjlq)((s,st;;m ) Sm%c]cowg“ (33)
_ _ [f(s,1,m)+16st](45 —1) 32st
5{1’_(1+{1 25A(s, 1), }f(s,l,m)) cosad,

(4s — m? —1)(4s + m? —1)sing,, A
sY2A(s, 1), ¢

¢/, =sinaf, |
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with

(= =L (g, ) (34

where the scattering angle is measured in the c.m. system.

Although (31), (32), and (33) describe all polarization phenomena
associated with this simple process, much physical insight may be gained if
one considers various limiting results which can be obtained from these
equations. Beginning with the relativistic limit in which one neglects the
electron’s mass relative to the quantity 4s, one finds from (33)

A=A,
¢ =cosaf, |
¢, =sin¢, (35)

This result tells one that in this limit the orientation of the electron’s
polarization vector relative to its momentum is unchanged as a result of the
scattering process.

Additional insight is gained into the effect of the interaction on the
electron’s polarization vector, if one considers the case when the target’s
mass is much larger than the electron’s mass and energy. In this case the
scattering angle @, in the c.m. system is the same as the scattering angle 6,
in the laboratory system. With the approximations

ds=m(m+2w,)
f(s,1,m) = 4m*(w} -1) (36)
one observes that the components of the polarization vector in (33) become
A =fi(w,, 0)A, + f(w,,8)cosaf, |
€l = f(w,,0)c0s0a8, ) — fo(w,, 8)A,
¢/, =sinat, | (37)
with
i@, 8) =1-2/[1+ @ %cot?(8/2)]
fo(w,,0)=2w,c0t(8/2)/(1+ w,cot*(8,2) (38)
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For this case, one finds in the relativistic limit f,(w,,#) =1 and f,(w,, ) =0
so that one again recovers (35). Further insight is obtained from this case if
one now considers the low-energy limit in which the energy w, =1. In this
limit f,(1,8) = cos# and f,(1, 8) = sin @ so that (37) becomes

AJ=cosf\, +sinfcosat,
¢/, = —sinfA, +cosfcosaf, ,
¢, =sinag, | (39)

In this way, one recovers the well-known result that the quantization
direction of the electron’s spin does not change as a result of low-energy
scattering. At this point it is interesting to note that the result for the special
case given in (37) agrees with the result on p. 272 of Beresteskii et al. (1971),
where

(A% —|Bj*)&, +2|B|%, £, +2A|Ble, X £,

f=
“ A2 +|B]?

(40)
with

A=w,+1+4+(w, —1)cosb

B=—i(w,~1)sinf

Further understanding is achieved when one considers the specific
differential cross sections which are related to the limiting results already
discussed. In the laboratory system, the differential cross section of interest
is found from (17) and (31) with m,=m_=1, and m, = m = m. For this
case the relativistic limit is found when one uses the approximations

f(s,1,m) = (4s = m?)®
s—m/4=(m/2)e,
u—m/4=—(m/2)e,
t=— wwsin?(8,/2)
0 =a,/[1+2(w,/m)sin’(8/2)] (41)

In this limit, the differential cross section in the laboratory system becomes

- (50030 = Jg-0.0(1+ 88 (42)
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with £/ given by (35). The cross section resulting from averaging on the spin
directions of the initial electron and summing on the spin directions of the
scattered electron is

oo (Epelt)]

Returning to (31), one can consider the case also when the recoil of the
target can be neglected. In this limit, one finds

_ | «cos(6/2) F(4t)
2w,sin*(8/2)

N P B CLTD (B N I

with £/ given by (37) and with the Mott cross section given by
do ) ( do ) 22
1-v’sin*(6,/2) (45)
( dﬂ Mott dﬂ Ruth. [ ]

Here v denotes the electron’s velocity, and the Rutherford cross section is

()., = i) ()

Finally, in the nonrelativistic limit when w, =1, one finds

do (5..5,) = ( do ) 1+¢/-&,
dﬂlab SaxJe dQlab Ruth 2

(47)

with £/ given by (39).

Of particular interest are those effects associated with a detection of a
change in the direction of the polarization of the electron. Various ratios
may be found from (31) which are independent of the form factor F(4¢).
For example, with reversal of the polarization vector associated with the
detector one finds

do(ga! B éc)/dt _ 1- &c/' Ec
do(§,.6.)/dt  1+§/-¢,

(48a)

For the case of helical electrons with A, =1 and A, = +1 or —1, one finds

do(+,-)/dr _ ~161(4s + m* —1)°
do(+.,+)/dt  2f(s,1,m)A(s, 1)o+16t(4s + m* —1)°

(48b)
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In the high-energy limit with s > m, one finds that this effect decreases with
energy as
do(+,—)/dt _ -1t _ sin?(0/2)
do(+,+)/dt 45 mP0,[1+(2w,/m)sin*(0/2)]

(48c)

In the case when one neglects effects due to the recoil of the target, the
ratio (48) becomes

do(+,—)/dt _tan’(8/2)
do(+,+)/dl~ w2

a

(49a)

Interesting phenomena are found also when the polarization vector of the
electron is initially perpendicular to the beam direction. For example, if
§a=land A,=+1or —1, then

do(¢,=1,A,=1)/dt |1+ wgcot(6,2) (49)

do(£, =1,\,=—1)/dr _ [1— w,cot(8/2) ]2
In conclusion, one notes that the ratio in the case when §,, =1 and §{, = +1
or —1 is the same as (49a) and that the differential cross section vanishes
when £, =1 and £, = — 1. Numerical values for the ratio (48b) are given in
Table I for the elastic scattering of helical electrons from helium in the
laboratory system.

4. DEEP INELASTIC SCATTERING AND VIRTUAL PHOTON
CROSS SECTIONS

The scattering of a high-energy electron in the state |a, s,) to the final
state |c, s.) from a nucleon in the state |, 5,,) to produce a final state with N
undetected hadrons characterized by total four-momentum D=a+b—c,
may be also analyzed with the invariant cross section (11). Before develop-
ing various specific cross sections for the analysis of experimental situations
involving all possible polarization configurations for the particles in the
initial state and for the scattered electron, it is useful to describe the physics
of this process in terms of the absorption by the target of a virtual photon of
effective mass g% = 4. This absorption process may be analyzed as well
with the invariant cross section (11) which can be used to define the cross
sections for the absorption of a virtual photon of specific polarization.
Specific cross sections of this type have proven useful to other researchers



266 Garavaglia

TABLE 1. The Polarization Parameter P(s, ) = [da(+,—)/dt]/[do(+ . +)/dt]
Forms Eq. (48b) for Values of »,, where » = w, — w_ = vy, for the Elastic Scattering
of Helical Electrons from Helium. The Electron’s Energy in Natural Units in the
Laboratory System is w,, and the Maximum Energy loss is vy, = f(s,1, m)/8ms.

P(s, 1) P(s,t) P(s,0) P(s,t)
w, =11 w, =101 w, =1.001 w, =1.0001
vy X107% x=5 x=6 x=1 x=8
0.5 0.087 0.099 0.100 0.100
1.0 0.195 0.220 0.223 0.223
1.5 0.332 0372 0.376 0.377
20 0.512 0.568 0.574 0.575
2.5 0.756 0.830 0.838 0.839
30 1.111 1.199 1.208 1.209
35 1.671 1.756 1.766 1.767
40 2.684 2.698 2.701 2,701
45 5.084 4.626 4.592 4.589
5.0 17.853 10.806 10.440 10.405
P(s,0)X107%  P(s,0)x1072  P(s5,0)X107*%  P(s,0)x107°
w,=5 w, =10 w, =100 w, =1000
vg X107% x=3 x=3 x=2 x=1

02 0.718 0.080 0.081 0.104
0.4 1.751 0.173 0.176 0.232
0.6 3.362 0.285 0.290 0.392
038 6.226 0.420 0.428 0.601
1.0 12.741 0.586 0.600 0.881
12 42,129 0.797 0.818 1.280
14 1.072 1.104 1.891
1.6 1.446 1.499 2.944
1.8 1.986 2.075 5.198
20 2.832 2.996 13.405
22 4.345 4704

24 7.863 8.966

2.6 24.462 38.402

for the interpretation of experimental information regarding inelastic
scattering (Gilman, 1972; Hand, 1963; Bjorken, 1970).

The method which 1 describe here for defining the particular photon
absorption cross sections is essentially a more conventional version of the
method used by Schwinger (1975a, 1975b). To begin, one considers the
interaction of an electron and the target to be mediated by a spacelike
photon of momentum g = a — ¢ which is associated with an electromagnetic
field characterized in momentum space by the vector potential A*(g). This
vector potential satisfies the Lorentz condition g-A(a)=0 and takes the
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form

A*(q) = —[=/(t +ie)] g, (c,a)., (50a)

It may also be written as

3
A*(q)= _(4")1/2518"““(” (50b)

where ¢(A) denotes the polarization four-vector for a state of pure polariza-
tion. One can choose three independent states of polarization which are
compatible with the Lorentz condition such that g-e(A) = 0. Returning to
(11) with the initial virtual photon and nucleon state represented by
|g, €(A), b, 5, ) and with the transition amplitude to the final state containing
N hadrons represented by

(fIM|q,e(X), b, s,) = — a'/?A(q)-(b, 5,|J,IN) (51)
one finds
a8me*(N)-ImH(q, b, s, ) e(\)
m(v2—41)'?

o(e(A),s,) = (52a)

For this cross section, I have used (3d) in the form
f(s,q,b)=4m*(v* —4r)
and 1 have used the variable »=(b-q)/m which corresponds to the

electron’s energy loss w, — w, in the rest frame of the target; furthermore I
have introduced the definition

Im H*(q,b,5,) =Y. 3, p,dp,...dp
’ N spin 8(277)3N 4/ i N

N
X I;Ilﬁ(p? -m?)0(p,)8(q+b—Dy)
X (b, sp| JFINY(N\Jy1b, sp) (52b)

As can be seen from the unitarity condition for the case of the forward
scattering of a virtual photon by a nucleon

2Im(q, b|T|q, by = (27)* L 8(g+b— Dy)Kq. bITINY>  (53)
N
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with

(nriy=T10E) ™ T1e) ™ (1M
The tensor H*"(q, b, 5,,) is proportional to the amplitude for the forward
scattering of a virtual photon by the target. It follows from the gauge

invariance of the scattering matrix that H**(q, b, s,) may be expressed in
terms of gauge-invariant tensors such that

4
H"(q,b,s5,)= Y Im H(4t,v),T* (54a)
i=1
with
TP = — m41(g" — g*q’/41) | (54b)
T = —4t[b* — (mv/4t)q"][b* — (mv/41)q"]

—(1-»2/41)T} (54c)
Ts‘”(sb)=—2m3iE(u,v,q,sb) (54d)
Tf”(s,,)=—mq~s,,iE(,u,v,q,b) (546)

where one uses the notation
E(a,b,c,d)=e""a,berd, (55a)
with the completely antisymmetrical pseudotensor defined according to

et = (1/4)Tr[v*v*y"y*y"] (55b)

The tensors (54) may be derived from either a gauge-invariant representa-
tion of the forward photon scattering transition probability made up of
scalars formed from the electromagnetic field F** = g*4*(q)— q"A*(q) and
the four-vectors ¢, b, and s, as done in Schwinger (1975a,b) or by a direct
reduction of the polarization tensor of the nucleon occurring in elastic
scattering as described in Section 5. The tensors in (54) have the convenient
properties

q,T* =0, i=1,2,3,0r4

bT}" = b,T}"(s,) =0 (56)
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where T} and T} are symmetrical in p and », while T}*(s,) and T}*(s,)
are antisymmetrical.

With particular choices for the photon polarization four-vectors in
(52a), one can construct as many virtual photon absorption cross sections as
there are form factors Im H,(4¢, »), and these form factors may then be
expressed in terms of the cross sections. The photon polarization four-vec-
tors can be represented in a coordinate system formed from the right-handed
orthonormal triad e, €,, and e,, where e, is in the direction of the virtual
photon’s momentum. This system is defined as follows:

e, =e Xe,
e,=(a—c)/la—c|
e, =e, Xe,/sinb,, (57)

A state of transverse polarization is represented by a unit vector e, in the
plane (e,,¢,), and the associated polarization four-vector satisfies the condi-
tions e*(T)-e(T)=—1, and ¢-¢(T)=0. For convenience, the spacelike
four-vectors &( p), and e(r) are represented in terms of four-vectors for
states of circular polarization such that

V2e(r) =e(+)+e(-)
iW2e(p)=e(—)—e(+) (58)

The cross-section for the absorption of a transverse virtual photon is found
with the choice ¢(T) in (52) to be

or = Qo[ (1~ »2/4t)Im H,(41,v)—Im H,(4t, v)] (59a)
with
0, = —32mamt/v(1—41/»2)""? (59b)

A state of longitudinal polarization is represented by the timelike unit
four-vector

e (L) = (mvq* —4tb*) /m|(41)" —41p2]"

(60)
When this four-vector is substituted into (52a), one finds the cross section

0, =Q,lm H, (41, 7) (61)
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At this point it is worthwhile to observe that the form factors
Im H,(41,v), and Im H,(41,v) are related to those used by other authors
(Gilman, 1972, pp. 130-133) by the equations

s Hy (40, ) = = (/B0 )~ W14, )+ (1 =071 ) W40, )]
Im H,(42,») = —(7w/8mt )W, (41, ») (62)

Furthermore, the cross sections (59), and (61) differ from those used by
others in the definition of the flux where the replacement my(1 —4¢/p*)*/?
- mK is made with mK = mv + 21,

The remaining two form factors also may be related to cross sections
for particular polarizations. One relation is obtained if the direction of the
nucleon’s spin vector is chosen in its rest system to be in the direction e, the
direction of the virtual photon’s helicity. In this case the polarization
four-vector for the nucleon may be written as

sp=[g" = (v/m)b*] /(v ~41)? (63)
With this choice, the tensors T{*(s,) and Tf*(s,) are related according to
(v* —40) T (s,) = 2vmTf*(s,) (64)

Now if one uses ¢( +), and e(—) in (52a), it is found that

6(N,) =07 =X, Q0[(1~»>/4r)Im H, (41, v) ~ (2mp /41 )Im Hy(41,v)]
(65a)
a(11)+o(11)=20; (65b)

—167am

W [2vam Hy(41,v)

a(t1)~o(1l)=

+(v? ~41)Im H,(41,»)]  (65¢)

In the above 1 1 denotes parallel alignment of the nucleon’s spin direction
and the photon’s helicity and 1 | denotes antiparallel alignment. To com-
plete the description, a final cross section may be found from the four-vec-
tor &(L) and the space like unit four-vector

e“(Tb)=E(qu,b,sb)/Dl/z(q,b,sh) (66)
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with

4 mv gq-s,
D(q’b’sb)= mv  m? 0
g-s, 0 g2
It is convenient to choose s, so that in the rest frame of the nucleon it is
equal to +e_, so that g-s,=0, and 5,> = —1. In this frame ¢(T,) becomes

(0, te,Xe,, ) and D(q,b,s,)=m?(v> —4t). The desired cross section is
found with the choice

e(LT)=ae(L)—ibe(T,) (67)

where a and b are real constants and where e(LT) is normalized according
to

e*(LT)-e(LT)=a?~ b?
It now follows from (52a) that
o(§,, =+1),r=a’0, + by
+4abQy[m/(—41)"*|Im Hy(41,v)  (68)
Before concluding this discussion, it is interesting to note the results for
real photons which are found when 4 = 0. It can be seen from the ratio
o, /(g, + o) that o, vanishes and that o becomes the total cross section
for the absorption of photons by an unpolarized target
0, =or(4t=0) =8mamvIm H,(0,») (69a)
Also in this case one observes that (65¢) becomes
o,(11)=0,(11)=—-16mam[2mIm H;(0,»)+»Im H,(0,»)] (69b)
Returning to the principal task of deriving cross sections for the
analysis of experimental situations with general polarization, one can use

the transition amplitude

(fIM|a,s,, b,5,) =a(N|J|b,s,)-D(t)-J,(a,c) (70)
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where the photon propagator is found in (22), along with (11) to write

oo o | — 2
O\S, T, U, 84,85,5.) = 27;-f1/2(s,1,m)

dcf(c)d(c*—1)L*(s,,s.)ImH,(q,b,s,)
X .
/ t*+ie

(71)

Here L*’(s,, s.) 1s given by (24), and Im H,,(q, b, 5,,) by (52b) or (54a). As
before s and ¢ are given by (2), but u is now

du=2(1+m*+mv)—4s (72)

Using a definition similar to (15), one can define the double differential
Cross section

2 a-c)’ c—b)’
T{;‘(sa,sb,sc)=a(s,t,u,sn,s,,,sc)8(t—%)B(u——(él—))

(73)
In the laboratory system, one finds

d% M (s, m) Y% (w1, m) 3%e(s,.s5,.5,)
0, dw, (84, 8, 5) = 32mm dt du (74)

It now follows from (71) and (74) when the integrations are carried out in
the laboratory system that

02 o? [f]/z(u,l,m)}

o
Sas Sps S )=
aQacawc( S 5c) 8amet? | f1%(s,1,m)

><0(wC)L’“’(sa,sc)ImHu,,(q,b,s,,) (75)

Upon evaluation of the tensor products which appear in the above, one
finds

4
L*(s,,s.) ImH,,(q,b,5,) = Y ImH(4t,v)L(s,,s5.)'T, (76a)
i=1
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with
L(s,,s. ) T,=—-8m*[2t+1-s,5,] (76b)
L(s,,s.)T,=- {16t[s(2s —1-m?—mp)
+ my(m? +1) 4+ (m? —1)/8]- (1= s,°5.)
+2(my ) (2t +1-s,°5,)
+16¢(s —(m?*+1)/4)(b-s,a s, + c-s,b-5s,.)
—8tmvb-s,a-5, —4tm*c-s,a-s,
+l6tzb-sab-sc—8m2t2(l+sa-st)} (76¢)
L(s,,5.) Ty(s,) = 4m’[41(s, s, + 545,
+(g-5,)(c-s,—as.)] (76d)
L(s,,5.) Ty(sp) =2mg-s,[mv(c-s,—a-s,)
+4t(b-s, +b-s.)] (76¢)

Results in deep inelastic scattering for all polarization orientations of the
electron as well as the initial nucleon may be obtained from (75) and (76).
From these equations, one may also derive results for those phenomena
which are dependent upon the electron’s mass and which are associated with
a change in the orientation of the electron’s polarization vector. Further-
more, polarization cross sections describing the elastic scattering of polarized
electrons from polarized nucleons, and muons, and from spin-zero targets
may be obtained directly from (76) as well.

Toward this end, 1 begin with a discussion of the scattering in the
relativistic limit of helical electrons from a nucleon of polarization s,. In this
limit one may use the approximations s, = A4, s, =A.,anda-c=1-2¢in
(76) to find

L(s,,s.)-T,=—16m**(1+A,\,) (77a)
L(s,,s.) Ty =—32t[s(s—m*/2—mv/2)

+m*v(m+v)/8— mt/4+m*/16](1+A,\,) (77b)

L(s,,s.) T3(s5) =8m’t[(a+c)s] (A, +A,) (77¢)

L(s,,s. ) T,(s,) = —4mitq-s,[m* —4s+ mp](A,+A,) (77d)
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With the approximations (41) and the definitions (62) as well as
d(4t,v) = —16m*Im H,(41,») (78a)
g(4t,v)=—8mlm H,(41,v) (78b)
one finds from (75) and (77)

d%0(A,, 55, A,) _ - a’wb(w,)
092,00, 81w

X [2W, (41, v) +cot?(8/2) Wyde, »] (1+ A A,)

alwb(w,)
- m[d(M,u)(a + C)'Sb

+g(4t,v)m(w, + wc)q-sb]()\a +A,.) (79)

Various special cases may be obtained from (79) with particular choices of
s,. For example, with summation on the spin directions of the scattered
electron and with s,=(0, +e,), and A, =1, one finds the difference for
parallel and antiparallel alignment of the electron and nucleon spin direc-
tions

d%(11) (1)) _ o
00, .90, 0Q,0w, 4wmi wa”(“f)

x[d(4t,v)(w, + w,cos8)
+ g(4t,v)m(w, + 0 )(w, — wCCOSO)] (80)

The cross-section difference resulting when the nucleon spin is parallel or
antiparallel to the virtual photon direction e, is found from (63) and (79)
with A, =1 and when the polarization of the scattered electron is undetected
to be

a(11)y _d%0(14)y_ o

_ - W2 g\ 122
30, 00, 00, 0w,  dmmi a0 T4 T0(e)

X [d(4t, ) w2 —w?)
+g(4t,v)m(wa+wc)(v2-—4t)] (81)

Another interesting cross section is obtained when a helical electron with
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A, =1 is scattered from a nucleon at rest which is polarized perpendicularly
to the electron beam such that 5, = (0, §,  ,e, , ). When the polarization of
the scattered electron is undetected, one finds

320(f“_) - az &: ((_0)
02,00, 8mmt w, ¢

X sinfcos a[d(41,v)—g(4t,v)m(w, + v )] (82)

Interesting phenomena associated with a change in the orientation of
the polarization of the electron may be found from (75) and (76) as well. As
demonstrated in Appendix B where the lepton polarization tensor is repre-
sented as the sum of two symmetrical gauge-invariant tensors and one
antisymmetrical gauge-invariant tensor, the cross section for a change from
perpendicular to parallel polarization is a first-order effect in the electron’s
mass, whereas a reversal of the electron’s helicity is a second-order effect.
Since these effects decrease with increasing s, they are more likely to be
detected in the case of elastic scattering, which is described in the next
section. Before turning to this case, 1 present here the result for deep
inelastic scattering for the case when an electron initially polarized per-
pendicularly to the beam direction is detected with helicity A .= +1 after
being scattered from an unpolarized nucleon. In this case, one finds from
(76) and (77) in the laboratory system

9% (+) B 9% (-)
0, 0w, 09, 0w,

o [f(“’l”")]l/zo(wc)

=477mt2 f(s919m)

X [Im H,(4t,v)8m*t(— w_)+1Im H, (41, v)

X(l6t{s[wcm— (1+2m2)]+ m”(";z +1)

+ %‘1)2}+2(W)2+8m2t2)(— w,)

+1m H, (41, v)4tm? [wa(wf —1)+Ja]je[wcos 19“]]

X cos asinf,, (83)
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In addition to the results which have already been given for deep
inelastic scattering, it is also possible to use the formulation developed in
this section to derive the sum rule which has been given in Bjorken (1970).
This rule relates the structure function W,(4¢, ») to the asymmetry parame-
ter for deep inelastic scattering when the helicity of the virtual photon is
either parallel or antiparallel to the spin direction of the nucleon. With 4
and P used to denote, respectively, the antiparallel and parallel alignment of
the virtual photon’s helicity and the nucleon’s spin, one can use (59), (61),
(62), and (65a) to confirm the identity

Op — 0, W2(4t,u)=( 2 )(1_%;)—1

ort+o, Tm

X [e*(P)-Im H(q, b)-e(P)

—e*(4)-Im H(q,b) e(4)] (84)
where

20r=0p+ 0y,

One can also use (75) and a method similar to that used to derive (81) to
show that the polarization asymmetry parameter

_ (0%, /3t0u)— (3%, /3tdu)
3%,/ 0tdu+ 8%,/ dtdu

(85a)

becomes

(2 a2 Wat @ 04— 0Op
A (V 41) ( zwawc )(0A+0P+20L)

x[1+ d +V2_4’( or )]_1 (85b)

Www, 20w, \opt+o,

For the case of interest where w, > w_ and where »? > — 4, the asymmetry
parameter becomes
94— 9p

a= g, +0pt20;, (86)
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In the scaling limit where W,(4¢,v») becomes a function of a single
variable, equation (84) can be used to show that

lim /()”("A”"”)m(m,v)dwz (87)

-4t -0 0T+0L

where Z is a constant. As described in Bjorken (1970), the right-hand side of
(79) may be converted, with the aid of an off-shell § function, into a relation
involving integration over the commutator of the components J, and J, of
the hadronic current. With the use of the quark model current algebra, the
resulting expression may be evaluated. In this way, one can achieve an
estimate of the magnitude of the polarization asymmetry parameter.

5. ELASTIC SCATTERING OF POLARIZED ELECTRONS ON
POLARIZED MUONS AND POLARIZED NUCLEONS

Information regarding the polarization effects associated with the elas-
tic scattering of a polarized electron from a polarized nucleon may be found
directly from (71) and (76). When the tensors (54) are supplemented with
additional gauge-invariant tensors, one can also derive information related
to the polarization of the target after scattering. To demonstrate how the
method works, I begin with a description of the elastic scattering of an
electron from a spin-zero target. Returning to (71) and integrating over u to
form

o(s,1,5,,5.)= fo(s, tu,s,, sc)6(4u —(c- b)z)d4u (88)
one finds the invariant cross section

o(s.1,50.5.) = (e/21f*(s5,1,m)) [ [ de d2 mvi )
X 8(c? —1)L*(s,, 5. )Im H,,(q,b)/(1* +ie) (89)
Now with
(4/7)Im Hy(42,v)=—(1/t)(1—»2/4t)F?(41)0(d)8(4t +2mv)
(4/7)Im H,(41,») = — (1/t) F2(4)0(d )8(4t +2mv)
Im H,(4t,»)=1Im H,(4¢,»)=0 (90)
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it follows that

p-L(s,,s.)p= —(1/[)[(1—t/mz)L(sa,sC)-T1
+L(sa,sc)-T2] (91)

Finally, with the use of (76), one recovers the results (30) and (32).

The elastic scattering of electrons and nucleons may be studied in a
similar manner; however, for a complete analysis in which the polarization
of the scattered nucleon as well as the polarization of the scattered electron
is also detected, the expressions (76) must be supplemented with additional
terms. To proceed, one observes that elastic scattering is described in terms
of the amplitude

(c,s.,d,s4M|a,s,,b,s,)=ait(d)Tu(b)-D(1)-J(a,c), (92)

with D(t) given in (22). The relevant quantity which must be calculated so
as to obtain the cross sections from (11) is

L(sa’ sc)'M(sb9 sd)nuc.= Llw(sa’ sc)Tr[Pdr,LPhI‘.,] (93)
where p, and p, are defined as in (26) and where
I't=Gy*+ G, p* (94)

The form factors G, and G, are related to the electric and the magnetic form
factors according to

G,=F,(41), G,=2m[F,(41)~F,(41)]/p’ (95)

with p =2b + g. It is instructive to note that the nucleon polarization tensor
may be expressed as the sum of gauge-invariant tensors in the form

M (54,54 pue. = GIZMM(Sb’ Sd)+ GZZTr[pdph] ptp’

nuc.

+Gle(Tr[PdP"PbY"] +Tr[PdY"PhP"]) (96)

with
M (sy,5,) = M*(0,0)+ MS* (s,,5,)+ MA*(s,,5,) (97)
where
M**(0,0) = Tr[ o, v*0,7"} (98a)
MS* (s,,54) =Tr[P0dde"Po—bbe”] (98b)

MA* (s, 5,) =imE(p,v,q, s, +5,) (98¢)
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The first two tensors are symmetrical in g and », whereas the latter is
antisymmetrical. A further reduction of (97) yields the more useful represen-
tation

M‘w(sb’sd) =M‘w(0’0)nuc.

+ G2 MS* (s54,5,)+ MA* (5, 5,4)]
—G3[g-59-54+2(m* - t)sys4] P*P”
+ GGy [ A4* (5, 54) =S¥ (545 54)] (99)
where the antisymmetrical gauge-invariant tensor A*(s,, s;) is defined as
— mA¥ (s,,5,) =im[ p*E(q, b, s, + 54,7)
- p'E(q,b,5,+ 5,4, P-)]
= (p?/4m* )T (s, + 5,) = T4* (s, = 5,) ~ (100)
and where the symmetrical gauge invariant tensor S*(s,, s,) is defined as
S* (s, 54) = P"TT[Y"POdidPO—Mb]
- PvTr[Y"PO—b#bPo#d] (101)

As in the case of scattering from a spin-zero target, the tensor product
(93) which appears in (89) may be obtained when s, = 0 from (76). This is
accomplished with the aid of

L(s;z’sc‘)'M(sb’O)nuc.= (4/W)fd(2mV)pr(Sa’Sc)Im Huv(q’ b’sb)

(102)
with
Im H,(4t,v) = —(n/8t)F28(4t +2mv)
2_ g2y 2
ImH2(4t’V)=_(7r/8t)(Fe Fmt/m7)8(4t+2mu)
1—-t/m*
Im H,(4t,v) = —(m/8m?*)F,F,8(41 +2mv)
2 -
Im H, (41, 7) = - (m/8m?)E, (F,— F,)8(4t +2mv) (103)

(1-1/m?)
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It can now be seen from (98) and (99) that the cross sections for the
scattering arrangement with averaging over the spin directions of the target,
s, =0, and with detection of the polarization of the scattered target is
obtained in a similar manner; however, in this case, one must make the
replacement s, = — s, in the coefficient of Im H,(4¢,v) in (76a).

For the case when the polarizations of both particles in the initial state
are known and when both polarizations of the particles in the final state are
detected, one must also evaluate the contributions from the tensor products
p-L(s, s.)p, L(s,,5.) MS(s,,5,), and L(s,,s.)-S(s, s,). The first con-
tribution can be found from (91) and is given by (32). The two remaining
contributions are rather long and may be found in Appendix A.

Before proceeding to the specific examples for the various polarization
configurations in the scattering of electrons and nucleons, it is worthwhile to
consider the simpler case of the scattering of polarized electrons and
polarized muons. This is a special case of (99), (102), and (103) with F, (4¢),
= F,(4)=1 so that one must evaluate L(s,, s.)-M(s,,s,), where
M¥(s,,s,) is given by (97). In this case the square of the scattering
amplitude which appears in (20) becomes

M(S, 1,85, 8,50, 84) = (om/t)z[L(0,0)-M(0,0)
+ LS(s,, s.)-M(0,0)+ L(0,0)-MS(s,, s,)

+ LA(s,, s, )-MA(s,,s,)+ LS(s,,s.)-MS(s,,5,)]

(104)
With the aid of (54) this may be expressed in the form
H(5,1,54,8,5054) = (am/t){(=1/20)[L(s,, 5,)
(T + Ty +(t/m*)Ty(s, +Sd)] my = —21
+ LS(5,,5.)-MS(s,54) } (105)

All but the last term may be found from (76) and (102), and this term is
given in Appendix A.

Specific results for various polarization configurations may now be
derived from the above. I begin here with the case when s, = s, = 0 which
illustrates the effect of the scattering process on the electron’s polarization
vector. Although one could derive an expression for the polarization vector
£Cf as is done in Section 3, I give here only the result for the invariant
differential cross section from which the polarization vector of the electron
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after scattering can be obtained. Using (6), (8), and (20), one finds
do 2 am \2
o 550 = (5 )75, 1.m) ()

8(4s4t) 5
X[ A(5, ) muon (1+ A A )+ s Lm) (1+E2)AN,

+ {[A(s, 1) muon — 812 (cos acos Bcos @, + sinasin B)

—16t(S —1/4)COSaCOSB(1+cos<pac)}£a¢£cl

. (4s-1-m*)é&, ¢
+16cosasm<pacé"a[ 8¢, +3 £, A,
) (4s-1-m?)é, ¢
—16cosBsing, &, [_——85’0_— + 2 IR
(106a)
with &,, and &,, and ¢, given by (3) and with
A(S, ) mon =16{[s = (m? +1) /4] + 5t + 1212} (106b)

In the relativistic limit (106a) becomes

do 2 am\?
E(savsc) = [W](T) A(s’t)muon

8t
X{1+A A +|[1-——7F7
{ e [ A(s’t)muon

]cos(a—ms“z“}

m,=0

(106¢)

A number of interesting special cases may be obtained for states of
pure polarization when the direction of the electron’s polarization is changed
upon detection. Of particular interest are the two cases where in the first
£,, =A.=1,A,=¢, , =0 and where in the second case A, =1, A= —1,
and £, , =§,, =0. The results for the first case may be read off directly
from (106a). The result for the second case is conveniently represented by
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the parameter

B da(+,—)/dt B —41[16st+(4s+m2—1)2]
P(s’q’ac)_'d0(+,_)/dt+do(+,+)/dt_ f(s,1,m)A(s, 1) muon
(107)

where in the c.m. system ¢ is given by (34). The numerical values for
P(s, @,.) are given in Figure 2.

X:\O)a=8 -

)
I
!

X=5,057 n

[$)]
|

P(s,@)x10°%

X=2.5,0-6

o 20 40 60 80 100 120 1490 160 180
Cp“(de %')

Fig. 2. The polarization parameter P(s, g,.) from Eq. (107) for the elastic scattering of helical
electrons from unpolarized muons versus the scattering angle in the c.m. system ¢,. The
quantity x is defined by (45)'/2 = xm.
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Another interesting case occurs in the scattering of electrons and
muons with known polarizations s,, and s, when the polarizations of the
particles in the final state are undetected. In this case one finds from (105)

T =g (7]

x( l6{[s—(1+m2)4]2+st+§}

2t
f(s,1,m)

—4t{[4s -1-m?+
(4s -1+ m?)(4s+1— mz)])\‘,}\b
+2m[—cos(a— y)+cosozcosycosz(q)ac/Z)]§“§,7l

+(é"bcosa5in(pac)>\b£al - (mé"acos'YSin(pac)Aang.})

(108a)

where &,, &,, and @, are given in (3). Of special interest are the cases when
A,=£,, =1, A,=£,, =0 and when §,, =A,=1, £ =A,=0. These
may be found directly from (108a). The relativistic limit of this expression
for the scattering of helical electrons and helical muons of parallel and
antiparallel orientations yields

do [ o 1? m2\* m?
E(TT)=W-———t(s_m2/4)_ [(u—T) +Tt} (108b)
do i yenl—a  Pl(s-m) o m
E(Tl)_w_t(s—mz/@‘ [( 2 ) + t] (108c)

To conclude the discussion of the scattering of electrons and muons, one
may note that the case when one averages over the spin directions of the
initial particles, s, =s, =0, and detects the polarizations of the scattered
particles may be obtained from (108a) with the use of the replacements

}\a_)_)\cvxb_’_}‘d’a_’ﬁ,y_)s’gbL _)gdl’andgaJ_ _’§C_L
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A similar analysis may now be applied to the case of the elastic
scattering of polarized electrons and polarized nucleons. Since the general
method has been well illustrated, 1 give here only the results for some of the
simpler special cases. Firstly one may recover the well-known result for the
scattering of unpolarized particles when the polarizations of the particles in
the final state are undetected. This result is found from (20), (76), (102), and
(103) to be

do

Ta
—(5,t)=—=——""7A(5,)nuc 109a
(51 = s A (1059)
with
16
A(s,t)nucl.= (1“[/"’[2)

< F2| - _L_{_(mz-kl)2

el 7M7Y 16

YO D L PO (m*-1)°

Fm( 2)[ su ) (1 m2)+ 15

(109b)

In the relativistic limit, one finds in the laboratory system from (17), (41)
and the above the Rosenbluth formula

(do(s,t)) _ a’cos®(6,/2)
A Jros. dwsin*(8/2)[1+ (2w, /m)sin?(8,2)]

FZ_FZ 2 2 2 '
2o mm) 25k 0]
1—t/m? m? 2

The result for the general elastic scattering situation in which the initial
polarizations are known and the final polarizations are detected may be
found from (20), (76), (99), and (103). In this case the invariant differential
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cross section becomes

ﬂ(s 5,8 s)=—1 (ﬂ)z
dr "t et qnf(s,1,m)\ 8

| g Elas) Ty B2 (/) B LG5y,
€ 2t 1-—-[/m2 2t

_ F‘eFmL(sa’sc)'Ts(sbﬂlhsd)
2

2m

— Fm(Fm_ F‘E)L(sa’sc)'n(sb_sd)
(1-t/m?)2m?

+GiL(s,,5.)-MS(s;,5,)

= G3[g 549754 +2(m* = 1)s,75,] p-L(s,5.)p

_GIGZL(SH’SC)'S(sb’Sd)} (111)

my=—2¢

In this expression, the tensor products L(s,,s.)-7; come from (76), p-
L(s,.s.)-p is found from (91), and the remaining terms are given in
Appendix A. In the relativistic limit for the scattering of a helical electron,
one finds from the above and (77) with mvy + 21 = 0 for the case when the
final state polarization of the nucleon is undetected the result

do 2 ar\?
E(Au,sb’}\c)_ 47Tf(s,0,m) ( t )
FZ—FZI 2
x F;,28m2t(1+>\a)\r)+( e —Ful/m )16
(1-1/m?)

X[(s— mTZ)Z+ st—(mth)(l— #)](hﬂ\a}\c)

— F,EAmt[(a+c)-s,| (A, +].)

F,(F, - F,)(2t/m)
(1-1/m?)

q~s,,[z(u—s>1<xa+m}

(112)
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In conclusion, one notes that cross sections related by the use of
crossing symmetry to the ones derived above provide a description of
analogous phenomena which occur in the scattering of polarized electrons
and positrons. Furthermore, since the polarization cross sections which have
been presented here depend only upon the well-established properties of the
electromagnetic interaction and since they are independent of any particular
speculations about the internal structure of the nucleon, they may be used
to verify predictions of models which provide explicit representations of the
structure functions. Especially interesting are those models which represent
the structure functions in deep inelastic scattering (Kuti and Weisskopf,
1971; Domokos et al.,, 1971; Schwinger, 1976a,b). A discussion of these
models may be found in Appendix C.

APPENDIX A: TRACES

The direct evaluation of the traces which have been used for deriving
various cross sections may be accomplished in all cases considered with the
methods described in Garavaglia (1975) and with the exchange operator
method which 1 describe here. The latter method is demonstrated with the
evaluation of T(c, a)-T(d, b), where

T#*(d, b) = Tr[ Py ¥*PosY" | =1 (A1)
One may write
T#(d,b) = P(db)d*b" (A2)
where the exchange operator P(db) is defined as
P(d,b)=1+(12) 4, +G(d,b) (A3)
with
(12) spd*b” = b*d*; G(db)d*b* = g*'(1—-d-b) (A4)
It now follows that
T(c,a)-T(d,b) = [1+(12) g + (12) (o +(12) 45(12)
+[1+(12) ) G(db)+[1+(12) 4] G(ca)

+G(db)G(ca)]d*b'c,a, (AS)
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which yields
T(c,a)-T(d,b)=2[d-cb-a+b-cd-a+2—d-b—c-a] (A6)

A complete description of the polarization phenomena associated with
the exchange of a single virtual photon in the elastic scattering of electrons
from muons and nucleons is accomplished with the additional tensor
product which is given here. The last tensor product in (105b) becomes
upon evaluation

LS(s,,5.)-MS(s,,54)=—5,5.L(0,0)-MS(s,,5,)— 5, 5,M(0,0)-LS(s,,5.)
—5,°5.85,°5,L(0,0)-M(0,0) + F(abed) (A7a)
The first three terms are found from (76), and the last term is
F(abed) =2a-ba-s,[b-5,48, 55+ q*5p5, 54]
+2a-.bc-sa[b-sdsb'sc+q-s,,sc-sd]
+ 8125, 5854+ 5,545 5]
+2[a-sb-s, +c s,bs.]
X[a-syb-s;+a-s,q-s,]
—2a-sc-s5,b-s5,4q9-5,
+4t{a-sfa-s;s, 5, +a sy, 5,]
+cs,la-spsos,+asys, s,
+b-sy[b-5.5, 5, +b-5,8,5.]
+q-5,[b-s5,5.5,+b-5.5,5,)
+b-sy[a-s.s, 55— q 5p5,5.]

+a-5 b5y, 5 —C 5,5, 541} (A7b)
The symmetrical tensor S**(s,, s,;) defined in (101) can be written

S¥(8p054)/m=2p*p"s, 5,

—(p¥sh+ p’sk)q-sy +(p¥sy + p'st)q-s, (A8)
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and it satisfies g,5*(s;, 5,) = 0. From the lepton polarization tensor (B4),
one can now find

L(s,,5.)'S(8y:55)/2m=p-L(s,5:) Psp"S,
= - [L(0,0)+ LS(s,, )] 5495,
+p-[L(0,0)+ LS(s,,s.)|-s,9-5, (A9a)
with p-L(s,,s.)-p given by (32) and with
p-L(0,0)-s,=2[a-b(a+c)s,+(a+b)s,2t] (A9Db)
p-LS(s,,5.)84=—5,5.p L(0,0)-s,+2a-s[c-s,b-s,+abs,s,]
+2¢-s,[a-syb-s.+a bs.s,)
+ar[(a+b)s.s, 55+ bsyso5,] —2a-5.005,b-54
(A9c)

APPENDIX B: THE RELATIVISTIC LIMIT

Representations of cross sections which involve the lepton polarization
tensor L*’(s,, s.) may be found in the relativistic limit, m, /s = 0, with the
method described in this appendix. Firstly, one observes that in this limit
the polarization density matrices p, and p, may be reduced to a simpler
form. To illustrate this, one notes that the polarization density matrix p, for
an electron moving in the direction e, may be written

o= 20 (14 4%) (B1)
with
sa= (@A /me,a°N,/m,.s,.) (B2a)
d¢=a*y +a y"* (B2b)
Sa=Siy s vyt s, Y, (B2c)
where |
at=(a"+a%) V2, a =(a"-a*)/V2 (B2d)

s =(s3+s) V2,57 =(s2—s2)/V2 (B2e)
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In the relativistic limit a~ vanishes, and since y~y~ =0, one finds with
¢=a*y and §,=a*y A, +§,, the result

20, = ¢[1+ (A, + 4§, ,)7°] (B3)

A similar expression may be found for p,, and the representation of the
lepton polarization tensor is found in this limit with the use of these
approximations for the polarization density matrices. It is instructive to note
that the properties of > permit one to write the lepton polarization tensor
(24) as the sum of three gauge-invariant tensors

L#V(O’O) = Tr[pOC'YppOaYy] (B4a)
LSFV(sa’ SC) = Tr[pOC#rY#pO—méayv] (B4b)
LAM(s,,s.)=—iE(p,v,q,5,+5s.) (B4c)

The first two tensors are symmetrical in g and », whereas the latter is
antisymmetrical. A particularly simple result is found for helical electrons
where 5, = A ,a, and 5, = A ¢ so that

LP (A, A.)=[2(a*a” + g*t)—a*q’ — a’q*] (1 + A A,)
+(A,+A)iE(p,v,a,q) (B5)

For scattering processes in which a change is detected in the orientation
of the electron’s polarization, one can use (B4) to show that the cross section
for an electron initially in a state of perpendicular polarization to be
detected after scattering in a state of parallel polarization is proportional to
m,, whereas the cross section representing a reversal in the direction of the
electron’s helicity is proportional to m,”. This is seen with the aid of the
approximations

¢c= ("‘c"’jc_l_ ) (B6a)
SL‘”z (Ac/me)¢+}\cmeé (B6b)
e=(—-1/2c%e./2jc|) (B6c)

For the first case when §, | = A_.=1 one finds
4Tr[p0c#cl|yyp0—a¢a 4 Yy] = meZTr[#c"Y’L#a i .Yy]

~ T ¢ v 0 Y] (B7)
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where both terms are proportional to m, since ¢¢ = m 2. For the second case
when A, = — A =1, one finds

4Tr[P0r¢cnY"P0—a¢an] = ’"ezTr[fch“fauY"]
’Tr[#qﬂ"#a”}'”] (BS)

Following a similar method, one can see that in this expression there are
zeroth- and second-order effects in m,; however, as can be seen from (BS5),
the zeroth-order term vanishes for a reversal in the direction of the helicity.

APPENDIX C: STRUCTURE FUNCTIONS

In this appendix, I review two different approaches to the problem of
calculating the structure functions which occur in deep inelastic scattering.
The discussion is restricted to the case of the scattering of unpolarized
particles; however, it can be readily extended to cover the more general
case.

I begin with an outline of the well-known quark model which is
described in detail in Kuti and Weisskopf (1971). In this model, it is
assumed that a nucleon at rest consists of three fractionally charged
spin-1/2 particles which carry the internal quantum numbers of SU(3).
When the nucleon is moving with high velocity, these valence quarks are
accompanied by a collection of quark—antiquark paris. The interaction of a
high-energy electron with a nucleon is interpreted as resulting from the
interaction of the electron’s virtual photon field with the quarks in the
nucleon. Associated with each quark is a current of the form

J(p.A)i=ed(p,A) v u(p,A), (C1)

where e; (i =1, 2, or 3) denotes the fractional charge on the three different
types of quarks. It is assumed that the momentum of each quark is a
fraction of the total momentum of the nucleon such that p, = x;b. The
differential cross section for the scattering from a quark of index i is found
from (74) and (Al) to be

3

aii;v N ‘(%)2”(‘*’”)_1 ‘;e?Gi(w) (C2)

where w = —(2mv/4t). In the high-energy limit one can use (75) to show
that

wrWy(4t,v) =3 e!G;(w) (C3)



Polarized Electron Scattering on Spin Zero and Polarized Spin-1/2 Targets 291

and the structure function becomes a function of the single scaling vari-
able w.

In the equations above, the functions G,(w) represent the probability
distribution for the momenta of the quarks. These can be calculated if one
assumes that the distribution for the longitudinal momenta of the core
quarks is given by

dP.(x) = gdx(x? + m¥/b?) " (Cda)
and that a similar distribution for the valence quarks is given by
dP,(x) ~ x' 7O (x2 + m2/p?) "V dx (C4b)

where the Regge form appropriate for inelastic scattering is used. With these
expressions, the distribution for an n-quark state with three valence quarks
and n —3 quarks and antiquarks in the core pairs becomes

dP(x,,...,x,) =Z(g"'/k!)8(l— ﬁ: x,,)

' i=1

x [1xt-°© [T dx,(x2+m>6?)""""  (Cdc)

i=1 j=1

where Z is a normalization constant and where g*/k! is a statistical factor.
The functions G,(w) are found when (C4c) is integrated with the aid of an
exponential representation of the & function. In this way, one finds expres-
sions for the spin averaged as well as the spin-dependent structure functions
which depend upon the parameters a(0) and g. With a suitable choice for
these parameters, one finds reasonable agreement with the experimental
data.

A less well-known approach which also leads to scaling and to explicit
representations of the structure functions for deep inelastic scattering is
described in Schwinger (1975a,b; 1976a,b). In the remainder of this ap-
pendix, I give a brief description of this approach. For this method, the
basic physical assumption is that information about the structure functions
in the deep inelastic region can be obtained as the result of a smooth
extrapolation of information from the resonance region for electron—nucleon
scattering as well as from the region which pertains to photon absorption.
The principal mathematical assumption is that the structure functions can
be represented as a double spectral integral. This results in expressions of
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the form

2 2
H(41,v) = /fdM M 2h(Mi,M2)

M
X [(q +b)Y—- M2+ ie] _l[(q —b)Y-M+ ie] - (Csa)
Applying the integral transformation

(a/x)=f Temxt dg

to the second term in the denominator and extracting the imaginary part,

one finds after integration
1 ® 4t £, m?
dtexp ( )glh‘ ( : ) (Csb)
M2 )zfo [ M2 M2

Information about the properties of the functions #,(§) may be ob-
tained from the known behavior in the region near elastic scattering as well
as from the region appropriate for photon absorption. In the first case, one
can show that

Im H, ,(4t,v)=

F?—(t/m*)F} e 2
Py lf,//mz) %= [dge /Moy () (C6a)

Experimentally it is known that the functions F,(4¢) and F,
sonably represented by the function

(4t) are rea-

nt

F(41) = F,(0)(1—4t/m})”’ (C6b)
with my =0.9m. For — > 0, this yields the result
h{z(f) - §3

for £ <1. In passing, one should note that the same result is found for #5(£)
and h,(£) if H,(4t,7) in (76a) is replaced with (1—¢/m?)H,(4t, »). From
an analysis of the high-energy behavior of the photon cross section, one
concludes that a similar function 4,(£) is appropriate for this process and
that it behaves as 4,(£) ~1 for £ > 1.

For deep inelastic scattering, both 2v/m and —4¢/m? are large and
w >1. In this domain M2 ~ (& —1)(—4¢), and it follows from (C5b), (59a),
and (61) that

o=0or+o,=—(7ma/t)f,(w) (C7a)
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with
§
(w—1)

The extrapolation which connects the deep inelastic phenomena with
the phenomena which occur in the resonance region is made if one identi-
fies the function h,(§) in (C7b) with the A,(£) that occurs in (C6). This
suggests the replacement

fle)=—== Owexp[— ]Ea(g)d«s (CTb)

—4t/m?* - (w-1)""

which is to be made in F,(4¢) and F,,(4¢) which occur in (C6a) and (C6b).
For electron-proton scattering, this leads to the result

w(w-1) (w+0.95) .

fr(w)~ (6102) (@=073) gi(w) (C8)
with
g(0)=1+14(w—-075)""% >3
g (w)=1+115(w—-1)-034(w—-1)", w<3 (C9)

The function g,(w) is suggested from the high-energy behavior of the
photon absorption cross section, and it is assumed that this function is valid
for values of w down to 3. The function g,(w) results from a smooth
quadratic extrapolation to the value w=1 such that fp(w)~ (w—1)* as
w — 1. The functions g,(w) and g,(w) as well as their derivatives match at
w = 3. As in the case of the quark model, one finds with the present method
that the structure function

Wy(w) = (1/7v) f(w) (C10)

is in good agreement with the experimental results when w is replaced with
an improved scaling variable. From the above discussion, it is clear that the
quark model, although frequently used for the interpretation of the experi-
mental results for deep inelastic scattering, is not the only physically
appealing theoretical approach to the understanding of these phenomena.

NOTE ADDED IN PROOF

The methods developed in this paper have been applied to other
polarization phenomena, and they have been extended to include the
electroweak interactions of neutrinos and electrons. These applications may
be found in;:
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Garavaglia, T. (1980). I1 Nuovo Cimento, 56A, 121.
Garavaglia, T. (1980). Lettere al Nuovo Cimento, 29, 572.
Garavaglia, T. (1983). Physical Review (in press).
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